Grupa torsyjna

Z testwiki
Wersja z dnia 23:09, 7 wrz 2024 autorstwa imported>Tarnoob (Linki zewnętrzne: szablon)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacji Przejdź do wyszukiwania

Szablon:Dopracować Szablon:Spis treści Grupa torsyjna a. periodycznagrupa, w której wszystkie jej elementy są skończonego rzędu. Wszystkie grupy skończone są torsyjne. Pojęcia periodyczności grupy nie należy mylić z jej cyklicznością, choć wszystkie skończone grupy cykliczne są periodyczne.

Wykładnikiem grupy torsyjnej G nazywa się najmniejszą wspólną wielokrotność rzędów elementów G. Każda grupa skończona ma wykładnik: jest on dzielnikiem rzędu grupy |G|.

Klasycznym pytaniem o związek między grupami torsyjnymi i grupami skończonymi przy wyłącznym założeniu, że G jest grupą skończenie generowaną, jest problem Burnside’a: czy wskazanie wykładnika grupy implikuje jej skończoność? (ogólna odpowiedź jest negatywna).

Elementy skończonego rzędu dowolnej grupy tworzą podgrupę nazywaną częścią torsyjną. Grupę beztorsyjną nazywa się grupę, której jedynym elementem skończonego rzędu jest element neutralny. Istnieją więc grupy, które nie są ani torsyjne, ani beztorsyjne – nazywa się je grupami mieszanymi; jedyną grupą jednocześnie torsyjną i beztorsyjną jest grupa trywialna.

Rozkład

Ważnym twierdzeniem jest fakt, iż grupę torsyjną A można rozłożyć na sumę prostą p-grup Ap dla różnych liczb pierwszych p, przy czym Ap są wyznaczone jednoznacznie przez A. W ten sposób teoria grup torsyjnych redukuje się do teorii p-grup. Podgrupę Ap nazywa się p-składową grupy A[uwaga 1].

Przykłady

Nieskończonymi przykładami grup torsyjnych są:

Żaden z tych przypadków nie ma skończonego zbioru generatorów. Jawne postaci skończenie generowanych grup torsyjnych zostały skonstruowane przez Gołoda, na podstawie wspólnej pracy z Szafarewiczem oraz przez Aleshina i Grigorchuka za pomocą automatów.

Grupami beztorsyjnymi są:

Grupy, które nie są ani torsyjne, ani beztorsyjne (tzn. zawierają elementy zarówno skończonego, jak i nieskończonego rzędu), to np.:

Zobacz też

Uwagi

Szablon:Uwagi

Linki zewnętrzne

Szablon:Teoria grup
Błąd rozszerzenia cite: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>