Teoria ergodyczna
Teoria ergodyczna (stgr. εργον, ergon – "praca", οδος, odos – "droga") jest dziedziną matematyki zajmującą się ergodycznymi układami dynamicznymi. W najszerszym rozumieniu, teoria ergodyczna zajmuje się analizą jakościową działań grupowych na przestrzeniach (takich jak topologiczne, metryczne czy rozmaitości). Ważne jest, aby każde działanie zachowywało konkretną strukturę przestrzeni[1].
Historia
Pojęcie "ergodyczności" jako pierwszy wprowadził Boltzmann, aby opisać hipotezę dotyczącą działania na powierzchni energii potencjalnej. Niech będzie hamiltonianem, typem występującym w mechanice statystycznej. jest wówczas powierzchnią energii. Oznaczając przez stan punktu układu po czasie , Boltzmann przypuszczał, że dla każdego i orbita będzie równa całej powierzchni. Zdanie to nazwał hipotezą ergodyczną. Hipoteza ta okazała się jednak być fałszywa[1].
W matematyce, pierwsze twierdzenia bliskie ogólnym wynikom ergodycznym dotyczyły rozmieszczenia ciągu (część ułamkowa) dla niewymiernej w przedziale . Powiemy, że jest rozmieszczony jednostajnie na , jeśli dla dowolnych , zachodzi
.
W latach 1909–1910 Bohl[2], Sierpiński[3] i Weyl[4] udowodnili niezależnie od siebie jednostajne rozmieszczenie ciągu . Pierwsze dowody były elementarne, korzystały jedynie z analizy fourierowskiej. Niedługo później, w 1916 Weyl sformułował twierdzenie[5] mówiące, że dowolny ciąg o wyrazach w przedziale jest rozmieszczony jednostajnie wtedy i tylko wtedy, gdy dla dowolnej funkcji , całkowalnej w sensie Riemanna zachodzi
.
Twierdzenie to ma faktyczny charakter ergodyczny – szereg po lewej stronie możemy traktować jako "średnią w czasie", a całkę po prawej jako "średnią w przestrzeni". Funkcja ma okres równy 1. Zgodnie z teorią Fouriera, każdą funkcję okresową można wyrazić jako kombinacja liniowa specjalnych funkcji okresowych dla . Weyl skorzystał z tej obserwacji, aby poprzedni warunek zastąpić przez
dla dowolnego . Powyższe pozwoliło mu udowodnić kolejne twierdzenie.
Twierdzenie (Weyla o jednostajnym rozmieszczeniu wielomianów)[6]. Niech będzie danym wielomianem o współczynnikach rzeczywistych. Jeśli przynajmniej jeden ze współczynników jest niewymierny, to ciąg jest rozmieszczony jednostajnie na .
W 1931 r. Koopman opublikował krótki artykuł o znaczących obserwacjach[7]. Jeśli jest odwracalne i zachowuje miarę w przestrzeni , to operator zdefiniowany na (przestrzeni funkcji całkowalnych z kwadratem) poprzez jest unitarny. Halmos pisze[8]:
Twierdzenia ergodyczne
Twierdzenie Birkhoffa
Szablon:Główny artykuł Jeśli jest układem ergodycznym, to dla dowolnej funkcji zachodzi[1]
dla prawie wszystkich .
Średnie twierdzenie ergodyczne (von Neumanna)
Jeśli jest układem ergodycznym, a jest ortogonalną projekcją na podprzestrzeń
,
to dla dowolnej funkcji zachodzi zbieżność w normie [9],
przy .
Zastosowania
Teoria liczb
Teoria ergodyczna znajduje wiele zastosowań w analizie klasycznych i nowych problemów teorii liczb.
W opublikowanym w 2018 r. artyklue Bartnicka, Kasjan, Kułaga-Przymus i Lemańczyk ogłosili wynik dotyczący powtarzania się "bloków" w tzw. zbiorach liczb B-wolnych[10]. Wyniki te powstały jako rozszerzenie programu Sarnaka, który początkowo obejmował jedynie dynamiczną analizę liczb bezkwadratowych[11]. W 2020 r. Kułaga-Przymus i Lemańczyk przedstawili hipotezę Chowli i Sarnaka z perspektywy teorii ergodycznej[12].
Przypisy
Szablon:Kontrola autorytatywna
- ↑ 1,0 1,1 1,2 Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ Szablon:Cytuj
- ↑ P. Sarnak, Three lectures on the Möbius function, randomness and dynamics. http: //publications.ias.edu/sarnak/.
- ↑ Szablon:Cytuj