Topologiczna algebra Heytinga
Topologiczna algebra Heytinga – algebra Heytinga, której uniwersum jest rodzina zbiorów otwartych (topologia) pewnej przestrzeni topologicznej. Można powiedzieć, że topologiczne algebry Heytinga są tym dla ogólnych algebr Heytinga czym ciała zbiorów dla algebr Boole’a (por. twierdzenie o reprezentacji algebr Heytinga).
Konstrukcja
Niech będzie przestrzenią topologiczną. Algebra o uniwersum z działaniami danymi wzorami (1)-(6)
(1) (2) (3) (4) (5) (6)
dla zbiorów otwartych jest algebrą Heytinga, gdzie
Aby to sprawdzić, wystarczy jedynie wykazać, że
- wtedy i tylko wtedy, gdy
co wynika z faktu, że zbiór jest otwarty[uwaga 1]. Algebra nazywana jest topologiczną algebrą Heytinga (przestrzeni ).
Każda algebra Heytinga jest izomorficzna z topologiczną algebrą Heytinga (p. twierdzenie o reprezentacji algebr Heytinga) pewnej przestrzeni topologicznej W przypadku, gdy algebra ta jest wzbogaceniem algebry Boole’a, to przestrzeń jest zerowymiarową zwartą przestrzenią Hausdorffa (zob. przestrzeń Stone’a).
Uwagi
Bibliografia
- J. Michael Dunn, Gary M. Hardegree, Algebraic methods in philosophical logic, Oxford Logic Guides, Oxford 2001, s. 384–386.
- H. Rasiowa i R. Sikorski, The Mathematics of Metamathematics, Monografie Matematyczne, PWN, Warszawa 1963, s. 54–62, 93–95, 123–130.
Błąd rozszerzenia cite: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>