Krata podgrup

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania
Krata podgrup grupy diedralnej D4.

Krata podgrupkrata złożona z podgrup danej grupy uporządkowana za pomocą zawierania; kresami dolnym i górnym są odpowiednio iloczyn mnogościowy oraz grupa generowana przez sumę mnogościową podgrup (w przypadku grup abelowych za kres górny przyjmuje się iloczyn kompleksowy).

Przykład

Grupa diedralna D4 izometrii kwadratu zawiera dziesięć podgrup wliczając w to nią samą i podgrupę trywialną; kratę przedstawiono na rysunku obok – na dole znajduje się podgrupa trywialna, wyżej pięć podgrup rzędu 2 generowanych odpowiednio (na rysunku od lewej do prawej) poprzez symetrię względem osi pionowej, poziomej, obrót o kąt półpełny i dwa odbicia o osiach zawierających przekątne kwadratu; wyżej znajdują się trzy grupy, każda z nich zawierająca cztery elementy (w tym w środku grupa cykliczna obrotów); na samym szczycie znajduje się podgrupa niewłaściwa.

Szablon:Teoria grup