Epimorfizm

Epimorfizm – w teorii kategorii, morfizm mający prawostronną własność skracania, tj. dla wszystkich morfizmów spełniony jest warunekSzablon:Odn:
Epimorfizmy są odpowiednikami funkcji „na”, lecz nie są one z nimi tożsame. Pojęciem dualnym do epimorfizmu jest monomorfizm.
Wielu autorów książek o algebrze abstrakcyjnej i uniwersalnej definiuje epimorfizm jako homomorfizm „na” (surjektywny)[1]. Każdy epimorfizm w tym sensie algebraicznym jest epimorfizmem w sensie teorii kategorii, ale nie jest to prawdą we wszystkich kategoriach.
Epimorfizm konormalny
Jeśli dany epimorfizm jest kojądrem jakiegoś morfizmu, to nazywany jest on wówczas epimorfizmem konormalnymSzablon:Odn.
Jeśli każdy epimorfizm danej kategorii jest epimorfizmem konormalnym, to nazywa się kategorią konormalną. Każda z kategorii Gr, Ab, Vect jest konormalna. Kojądro w tych kategoriach istnieje dla każdego morfizmu
Jest ono równe grupie ilorazowej gdzie jest najmniejszą podgrupą normalną zawierającą
Przykłady
- Epimorfizmami w kategorii Set są odwzorowania „na”.
- Niech będzie epimorfizmem, a jednocześnie istnieje taki Niech Niech oraz
- dla
- Wtedy i co jest sprzeczne z tym, że jest epimorfizmem. Zatem nie istnieje i funkcja jest „na”.
- Morfizmy identycznościowe są epimorfizmami.