Własność Schura
Własność Schura – w analizie funkcjonalnej, przestrzeń Banacha X ma własność Schura, gdy każdy ciąg elementów przestrzeni X zbieżny w słabej topologii (słabo) jest zbieżny w topologii normy (mocno). Nazwa własności pochodzi od Issai Schura, który opublikował w 1921 dowód twierdzenia mówiącego, że przestrzeń ℓ1 ma tę własność[1] (zob. dowód).
Własności
- Każda przestrzeń o własności Schura jest słabo ciągowo zupełna. Istotnie, niech będzie słabym ciągiem Cauchy'ego w przestrzeni Banacha X, która ma własność Schura. Dla każdych dwóch ściśle rosnących ciągów liczb naturalnych ciąg
- jest słabo zbieżny do 0. Własność Schura implikuje, że
- Oznacza to, że ciąg jest ciągiem Cauchy'ego w przestrzeni Banacha X, a więc jest on zbieżnySzablon:Odn.
- Każda domknięta i nieskończenie wymiarowa podprzestrzeń liniowa przestrzeni o własności Schura ma również własność Schura oraz zawiera izomorficzną kopię przestrzeni ℓ1Szablon:Odn.
- Niech X będzie przestrzenią Banacha o własności własność Dunforda-Pettisa, która nie zawiera izomorficznych kopii przestrzeni ℓ1. Wówczas przestrzeń sprzężona X* ma własność SchuraSzablon:Odn.
Związek z przestrzenią ℓ1
Prototypicznym przykładem przestrzeni mającej własność Schura jest przestrzeń ℓ1. Każda domknięta podrzestrzeń przestrzeni ℓ1 ma własność Schura, jednak nie każda (ośrodkowa) przestrzeń o własności Schura zanurza się izomorficznie w ℓ1. Stosowny przykład podprzestrzeni przestrzeni przestrzeni L1 o własności Schura, która nie zanurza się w ℓ1 podali Jean Bourgain oraz Haskell Rosenthal[2]. Bourgain podał przykład przestrzeni Banacha, której każda domknięta nieskończenie wymiarowa podprzestrzeń zawiera izomorficzną kopię przestrzeni ℓ1, która mimo to nie ma własności Schura[3] (inne przykłady pochodzą od Azimiego i Haglera[4] oraz Popowa[5].
Przypisy
Bibliografia
- ↑ I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, Journal für die reine und angewandte Mathematik, 151 (1920), 79-111.
- ↑ J. Bourgain, H. P. Rosenthal, Martingales valued in certain subspaces of L1, Isr. J. Math. 37 (1-2) (1980), 54–75.
- ↑ J. Bourgain, ℓ1-subspaces of Banach spaces. Lecture notes. Free University of Brussels.
- ↑ P. Azimi, J. N. Hagler, Examples of hereditarily ℓ1 Banach spaces failing the Schur property, Pacif. J. Math. 122 (2)(1986), 287–297.
- ↑ M. M. Popov, A hereditary ℓ1-subspace of L1 without the Schur property, Proc. Amer. Math. Soc. 133, 7 (2005), 2023–2028.