Szereg 1 + 2 + 3 + 4 + …
Szereg 1 + 2 + 3 + 4 + … – rozbieżny szereg, którego składnikami są kolejne liczby naturalne.
-ta suma cząstkowa tego szeregu jest liczbą trójkątną
która rośnie nieograniczenie wraz z zmierzającym do nieskończoności. Suma cząstkowa Sn jest parzystą liczbą doskonałą wtedy i tylko wtedy, gdy jest liczbą Mersenne’a a jest liczbą pierwszą.
Chociaż szereg jest rozbieżny, istnieją metody pozwalające przypisać mu pewną wartość liczbową, która znajduje zastosowanie w takich dziedzinach jak analiza zespolona, kwantowa teoria pola czy teoria strun.
Sumowalność
W przeciwieństwie do szeregu przemiennego 1 − 2 + 3 − 4 + …, szereg 1 + 2 + 3 + 4 + … nie jest sumowalny metodą Abela, bo jego funkcja tworząca
ma biegun dla .
Szereg ten może być jednak zsumowany za pomocą regularyzacji funkcją dzeta. Mianowicie
- dla
gdzie oznacza część rzeczywistą liczby zespolonej jest funkcją dzeta Riemanna.
Suma ta jest rozbieżna dla jednak jej przedłużenie analityczne daje dla argumentu
- [1].
Fizyka
Szereg taki pojawia się w teorii strun bozonowych przy próbie obliczenia możliwych poziomów energetycznych strun, na przykład najniższego możliwego poziomu energetycznego. Stosując nieformalny opis, każda harmoniczna struny może być widoczna jako kolekcja niezależnych kwantowych oscylatorów harmonicznych, gdzie jest wymiarem czasoprzestrzeni. Jeśli podstawowa częstotliwość harmoniczna to to energia drgań -tej harmonicznej wynosi Sumowanie takiego rozbieżnego szeregu prowadzi do wyniku