Równoważność masy i energii

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

Równoważność masy i energii – koncepcja, według której masa (bezwładna) obiektu lub układu jest miarą zawartej w nim energii. Koncepcja ta wywodzi się ze szczególnej teorii względnościSzablon:Odn, przy czym idea ta oznacza faktycznie dwa[1][2]Szablon:Odn odmienne pojęcia.

Każdej niezerowej masie spoczynkowej odpowiada „ukryta” energia (spoczynkowa).
Każdej energii (spoczynkowej, kinetycznej, potencjalnej) odpowiada pewna „masa”, w szczególności energii całkowitej obiektu (układu) fizycznego odpowiada masa relatywistyczna.

Równoważność masy spoczynkowej i energii spoczynkowej

Pewne obiekty fizyczne (tzw. ciała fizyczne) i układy fizyczne (niekoniecznie złożone z ciał fizycznych np. chmura fotonów[uwaga 1]), o niezerowej masie spoczynkowej, mają niezerową tzw. energię spoczynkową. Energia spoczynkowa stanowi część ich energii, obok energii kinetycznej, związanej z ruchem obiektu (układu) jako całości (tzn. traktowanego jako punkt materialny położony w środku masy układu) i energii potencjalnej, związanej z jego oddziaływaniem z innymi obiektami (układami). Energia spoczynkowa pozostaje niezerową (w przeciwieństwie do energii kinetycznej obiektu (układu) jako całości) w spoczynku, czyli w układzie odniesienia, w którym środek masy danego obiektu (układu) fizycznego spoczywa, tzn. pęd obiektu (układu) jest zerowy (tzw. układ środka masy lub środka pędu)[uwaga 2]. Pozostaje też niezerową (w przeciwieństwie do energii potencjalnej oddziaływań z innymi obiektami) w odosobnieniu, czyli przy braku takich oddziaływań.

Masa spoczynkowa i energia spoczynkowa są różnymi wielkościami fizycznymiSzablon:OdnSzablon:Odn[3].

Masa spoczynkowa to wartość bezwzględna (długość wektora) czteropędu obiektu (układu) fizycznego, pozostająca stałą we wszystkich układach odniesienia, nie tylko w spoczynku – niezmiennik relatywistyczny.

Energia spoczynkowa to energia obiektu (układu) fizycznego odosobnionego – składowa czasowa jego czteropędu – mierzona w szczególnym układzie odniesienia, związanym z obiektem (układem) – układzie jego środka masy (układzie spoczynkowym, układzie własnym).

Jedynie w układzie środka masy, energia obiektu (układu) fizycznego odosobnionego jest równa jego masie spoczynkowej (z dokładnością do czynnika, czyli ze współczynnikiem proporcjonalności c2)[uwaga 3].

Stwierdzenie istnienia niezerowej energii spoczynkowej (tzn. energii w układzie własnym) obiektu (układu) odosobnionego (swobodnego) i jej równości z masą spoczynkową było istotnym odkryciem naukowym.

Wielkości te związane są wzorem:

E0=m0c2,

gdzie:

E0 – energia spoczynkowa,
cprędkość światła w próżni (w tej koncepcji nawet przyjęcie układu jednostek miar, w którym c równa się 1 (np. układ Plancka), nie czyniłoby masy spoczynkowej i energii spoczynkowej tą samą wielkością fizyczną, c jest tylko współczynnikiem),
m0 – masa spoczynkowa.

Zwolennicy poglądu, że jedyną wielkością fizyczną, „dziedziczącą” w szczególnej teorii względności rolę masy newtonowskiej jest masa spoczynkowa, nazywają ją po prostu „masą”, oznaczają m i piszą E0=mc2. Według tej koncepcji nazwa „masa” (bez przymiotnika) powinna być związana z niezmiennikiem relatywistycznym, nawet jeśli (w przeciwieństwie do poglądu Newtona) wielkość tak nazwana nie jest addytywna, i nie jest współczynnikiem proporcjonalności między prędkością i pędem (p nie równa się m0v)Szablon:OdnSzablon:Odn[4]Szablon:Odn.

Energia obiektu (układu) fizycznego, o niezerowej masie spoczynkowej (ciała fizycznego), odosobnionego (swobodnego), mierzona w innym niż spoczynkowy układzie odniesienia, związana jest z energią spoczynkową wzorem E=E0γ, gdzie γczynnik Lorentza. Jest zawsze większa od energii spoczynkowej, więc też większa od masy spoczynkowej; zwiększenie prędkości względem układu odniesienia zwiększa energię; przy prędkości dążącej do prędkości światła w próżni, energia obiektu fizycznego o niezerowej masie spoczynkowej dąży do nieskończoności[uwaga 4].

Istnieją obiekty fizyczne (np. fotony), poruszające się względem każdego układu odniesienia z prędkością c (w próżni), o zerowej masie spoczynkowej i energii spoczynkowej[uwaga 5], lecz niezerowej, skończonej i stałej energii całkowitej (cała ich energia jest energią kinetyczną)[uwaga 6].

Zmiany masy spoczynkowej

Energia spoczynkowa może być w pewnych procesach fizycznych przekształcana w inne formy energii, a inne formy energii w energię spoczynkową. Zmiana energii spoczynkowej układu fizycznego jest równa zmianie jego masy spoczynkowej (z dokładnością do czynnika, czyli ze współczynnikiem proporcjonalności c2)[uwaga 7].

Do całkowitej masy spoczynkowej układu fizycznego wnoszą wkład nie tylko masy spoczynkowe jego składników, ale też ich energie kinetyczne i energie potencjalne ich oddziaływań wzajemnych, mierzone w układzie środka masy (brak addytywności masy spoczynkowej).

Zmiana masy spoczynkowej układu może więc nastąpić nie tylko przez zmianę sumy mas spoczynkowych jego składników (układ otwarty), ale też przez zmianę w jakikolwiek inny sposób tak zwanej energii wewnętrznej układu (układ zamknięty, lecz nie izolowany) np. zmianę energii kinetycznej składników, lub energii potencjalnej ich oddziaływań wzajemnych. NiekiedySzablon:Odn utożsamia się energię wewnętrzną z energią spoczynkową, niekiedySzablon:Odn z częścią energii spoczynkowej, możliwą do przekształcenia w inne formy energii lub do uzyskania z innych form energii, w danym procesie fizycznym.

Natomiast nie zmieniają masy spoczynkowej układu zmiany energii kinetycznej lub energii potencjalnej układu jako całości (tzn. traktowanego jako punkt materialny położony w środku masy układu)[uwaga 8].

Równoważność masy relatywistycznej i energii całkowitej

Wszystkie obiekty (układy) fizyczne, o niezerowej energii całkowitej (czyli w ogóle wszystkie, gdyż nie istnieją obiekty fizyczne o zerowej energii), w tym także obiekty (układy) o zerowej masie spoczynkowej np. fotony, mają niezerową tzw. masę relatywistyczną.

Masa relatywistyczna i energia całkowita obiektu (układu) fizycznego są tą samą wielkością fizycznąSzablon:OdnSzablon:OdnSzablon:RSzablon:Odn.

Zarówno masa relatywistyczna, jak i energia całkowita obiektu (układu) fizycznego to składowa czasowa jego czteropędu, która nie jest niezmiennikiem relatywistycznym.

W każdym układzie odniesienia wielkości te są sobie tożsamościowo równe (z dokładnością do czynnika, czyli ze współczynnikiem proporcjonalności c2), choć wartość ich zmienia się przy zmianie tego układu[uwaga 9].

Stwierdzenie równości energii całkowitej obiektu (układu) fizycznego i jego masy relatywistycznej to konwencja terminologiczna (mogąca być przyczyną nieporozumień, wynikłych z nazwania jednej wielkości fizycznej dwiema nazwami).

Wielkości te związane są wzorem:

E=mrc2

gdzie:

E – energia całkowita,
c – prędkość światła w próżni (W tej koncepcji nawet przyjęcie układu jednostek miar, w którym c nie równa się 1 (np. układ SI), nie czyni masy relatywistycznej i energii całkowitej różnymi wielkościami, c jest tylko współczynnikiem.),
mr – masa relatywistyczna.

Zwolennicy poglądu, że jedyną wielkością fizyczną, „dziedziczącą” w szczególnej teorii względności rolę masy newtonowskiej, jest masa relatywistyczna, nazywają ją po prostu „masą”, oznaczają m i piszą E=mc2. Według tej koncepcji nazwa „masa” (bez przymiotnika) powinna być związana z wielkością addytywną, współczynnikiem proporcjonalności między prędkością i pędem (p równa się mrv), nawet jeśli (w przeciwieństwie do poglądu Newtona) wielkość tak nazwana nie jest niezmiennikiem relatywistycznymSzablon:OdnSzablon:Odn[5][6].

Zmiany masy relatywistycznej

Zmiana masy relatywistycznej (energii całkowitej) obiektu (układu) fizycznego może nastąpić przez zmianę sumy mas spoczynkowych składników (układ otwarty), zmianę energii wewnętrznej układu (układ zamknięty, lecz nie izolowany), ale też przez zmianę energii kinetycznej lub energii potencjalnej układu jako całości[uwaga 10].

Nazewnictwo

Równanie równoważności masy i energii – notatka Einsteina (1912)

Równanie E=mc2 bywa określane jako „wzór Einsteina”[7], który został sformułowany w roku 1905. Jednak równanie to nie było owocem jednej pracy. W roku 1905, w pracy „Czy bezwładność ciała zależy od zawartej w nim energii?” Einstein używał symbolu V dla oznaczenia prędkości światła w próżni i symbolu L dla oznaczenia energii traconej przez ciało w formie promieniowania. Wobec tego, zasada równoważności masy i energii nie została początkowo zapisana jako równanie E=mc2, ale jako zdanie w języku niemieckim, które znaczyło „jeśli ciało oddaje energię L w formie promieniowania, to jego masa zmniejsza się o L/V2[8].

Ponad ostatnim równaniem w tej pracy Einstein umieścił uwagę o jednej z przyczyn, dla których jego zdaniem zasada równoważności miała charakter przybliżony, wskazując na konieczność odrzucenia wyrazów czwartego rzędu i wyższych rozwinięcia pierwiastka w szereg[9]. W roku 1907, einsteinowska zasada równoważności masy i energii została zapisana jako M0=E0/c2 przez Maxa Plancka[10]. Następnie, w tym samym roku Johannes Stark podał interpretację kwantową zasady równoważności masy i energii[11], zakładając jej poprawność i ważność (Gültigkeit) do realizacji celu, który sobie wyznaczył. Celem tym było obliczenie minimalnej ilości energii zawartej w elektronie w stanie spoczynku. Stark zapisał jednak swoje równanie jako e0=m0c2, co wciąż różniło się obecnie najbardziej popularnej wersji równania.

W roku 1912 Einstein dostał zamówienie na tekst, który miał wejść w skład książki jako kilka rozdziałów poświęconych teorii względności. Einstein napisał 72 strony rękopisu, który jest najstarszym zachowanym rękopisem teorii względności. Na skutek wybuchu I wojny światowej książka nigdy nie została wydana. W rękopisie tego nieopublikowanego tekstu Einstein przekreślił symbol lagranżjanu L, zastępując go literą E.

W roku 1924, Louis de Broglie założył poprawność wyrażenia „énergie=masse c2”, które umieścił na stronie 31 swojej pracy Recherches sur la théorie des quanta (opublikowanej w roku 1925), ale on również nie napisał E=mc2. Jednak Albert Einstein powrócił do tematu po drugiej wojnie światowej i tym razem napisał E=mc2 w tytule swojego artykułu[12], którego celem było wyjaśnienie i uświadomienie problemu przez analogię, w sposób zrozumiały dla czytelnika niebędącego specjalistą[13]. Tytuł artykułu w wersji opublikowanej w języku angielskim w „Science Illustrated” powstał z wzoru E=mc2, który Einstein umieścił w tytule oryginału i z tłumaczenia ostatnich słów tekstu najbardziej naglący (najpilniejszy) problem naszych czasów[14].

Historia

Chociaż Albert Einstein był pierwszym, który wydedukował sformułowanie równoważności masy i energii w formie uważanej dzisiaj za poprawną, nie był on pierwszym, który powiązał masę z energią. Niemniej jednak niemal wszyscy poprzedzający go autorzy uważali, że energia wchodząca w skład masy ma postać pola elektromagnetycznego[15][16][17][18].

Newton: materia i światło

W 1717 roku Isaac Newton spekulował w „Pytaniu 30” w Opticks, że cząstki światła i materii są wzajemnie zamienialne. Zapytał: Szablon:Cytat

Swedenborg: materia złożona z „czystego i całkowitego ruchu”

W 1734 roku, szwedzki naukowiec i teolog Emanuel Swedenborg, w swojej książce Principia teoretyzował, że cała materia jest ostatecznie złożona z bezwymiarowych punktów „czystego i całkowitego ruchu”. Opisał ten ruch jako pozbawiony siły, kierunku i prędkości, lecz posiadający potencjał dla tych wielkości wszędzie wewnątrz siebie[19][20].

Masa elektromagnetyczna

W XIX stuleciu oraz na początku XX miało miejsce wiele prób zrozumienia, jak masa obiektu naładowanego zależy od pola elektrycznego, w czym brali udział Joseph John Thomson (1881), Oliver Heaviside (1888), and George Frederick Charles Searle (1897), Wilhelm Wien (1900), Max Abraham (1902) i Hendrik Lorentz (1904)[15][16]. Koncepcja ta została nazwana masą elektromagnetyczną, i miała zależeć zarówno od prędkości, jak i kierunku ruchu. Lorentz (1904) podał następujący wzór na masę podłużną i poprzeczną:

mL=m0(1v2c2)3,mT=m01v2c2,

gdzie:

m0=43Eemc2.

Ciśnienie promieniowania i bezwładność

Innym sposobem wyprowadzenia pewnego rodzaju masy elektromagnetycznej jest koncepcja ciśnienia promieniowania. W 1900 roku Henri Poincaré utożsamił promieniowanie elektromagnetyczne z „fikcyjnym płynem”, posiadającym pęd i masę:

mem=Eem/c2.

Poincaré próbował w ten sposób uratować twierdzenie o środku masy w teorii Lorentza, chociaż prowadziło to do paradoksów promieniowaniaSzablon:R.

Friedrich Hasenöhrl pokazał w 1904 roku, że elektromagnetyczne promieniowanie ciała doskonale czarnego niesie „widoczną masę”

m0=43Eemc2

będącą częścią masy ciała. Twierdził on, że niesie to ze sobą również zależność masy od temperatury[21].

Einstein: równoważność masy i energii

Albert Einstein opublikował swoją wersję zasady równoważności masy i energii w pracy (niem. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig?, pol. Czy bezwładność ciała zależy od zawartej w nim energii) wydanej 27 września 1905 r. w „Annalen der Physik”. Einstein uważał, że równanie równoważności ma zasadnicze znaczenie, ponieważ pokazuje że cząstka, posiadająca masę, ma energię „spoczynku” zwaną „wewnętrzną”, w odróżnieniu od znanych wcześniej energii kinetycznej i potencjalnej. Jednak większość naukowców dostrzegła znaczenie tego równania dopiero około 1930 roku.

W pracy swej Einstein pisze (w wolnym tłumaczeniu) Jeżeli ciało odda energię L w postaci promieniowania, jego masa zmniejszy się o L/c2 Jeżeli teoria jest prawdziwa, to promieniowanie przenosi inercję (bezwładność) między ciałem emitującym i absorbującym energię.

Odkrycie to było trudne do przyjęcia dla Einsteina – stąd uwaga o prawdziwości. Uważał on, że masa cząstki jest niezmienna i niezależna od prędkości.

Max Planck był pierwszym, który poza Einsteinem, wskazał ważność równania, zauważając, że masa układów związanych jest mniejsza od masy składników o równoważność energii wiązania układu. Planck zauważa też, że dla układów atomów związanych chemicznie, energia, a tym samym i różnica masy, jest niewielka, ale dla przemian jądrowych różnica masy jest zauważalna i na tej podstawie można określić energię przemiany.

Inni

W XIX stuleciu miało miejsce szereg prób wykazania, że masa i energia są równoważne, na bazie różnych teorii eteru[22]. W roku 1873 Nikolay Umov wskazał na relację pomiędzy masą a energią w eterze w formie 1=E=kmc2, gdzie 0,5k1[23]. Relację masy i energii prezentowało również piśmiennictwo Samuela Prestona[24][25] i publikacja Olinto De Pretto z 1903 roku[26][27]. Publikacja De Pretto zyskała uwagę prasy, gdy Umberto Bartocci odkrył, iż De Pretto i Einsteina dzieliły jedynie trzy stopnie oddalenia, z czego wywnioskował, że Einstein przypuszczalnie znał prace De Pretto[28].

Preston i De Pretto, podążając śladami Le Sage’a, wyobrażali sobie, że Wszechświat wypełniony jest eterem drobnych cząstek, poruszających się zawsze z prędkością światła w próżni, c. Każda z tych cząstek ma energię kinetyczną mc2, aż do małego czynnika numerycznego. Nierelatywistyczna formuła energii kinetycznej nie zawsze uwzględniała tradycyjny czynnik 1/2, gdyż wprowadzając energię kinetyczną, Leibnitz go pominął, i w fizyce relatywistycznej jest on głównie kwestią konwencji[29]. Z założenia, że każda cząstka ma masę będącą sumą mas tworzących ją cząstek eteru, autorzy wywnioskowali, że cała materia zawiera ilość energii kinetycznej równej E=mc2 lub 2E=mc2, zależnie od konwencji. Eter cząsteczkowy był wówczas traktowany jako zbyt spekulatywny by, aby go zaakceptować[30], a ponieważ autorzy nie sformułowali teorii względności, ich rozumowanie było całkowicie odmienne od Einsteina, który użył teorii względności do zmiany układów odniesienia.

Niezależnie, Gustave Le Bon spekulował w 1905 roku, że atomy mogą uwalniać wielkie ilości utajonej energii, wnioskując to z całościowej, jakościowej filozofii fizyki[31][32].

Wyprowadzenie wzoru

Pierwszego wyprowadzenia wzoru E=mc2 Einstein dokonał w 1905 roku w oparciu o emisję płaskich fal świetlnych o energii L2 przez ciało w dwóch przeciwnych kierunkach w dwóch układach współrzędnych (x,y,z) i (ξ,η,ζ)[33].

Później pojawiły kolejne wyprowadzenia tego wzoru[34]:

  • obliczenie pracy prowadzące do energii kinetycznej (1905)
  • emisja dwóch fotonów widziana w dwóch układach odniesienia (efekt Dopplera) (1905)
  • emisja i absorpcja jednego fotonu (1906)
  • czwarta składowa czterowektora pędu (1935)

Wzór E=mc2 został wyprowadzony już eksperymentalnie przez Lebiediewa (1900), a potwierdzony z dużą dokładnością przez Nicholsa i Hulla (1901) na podstawie twierdzenia Poytinga (1884) – jednak wtedy nie znano teorii względności i mechaniki kwantowej – jest więc to twierdzenie wyprowadzone na gruncie fizyki klasycznej[35].

Poniżej zaprezentowano inny przykład wyprowadzenia tego wzoru opierającego się na fizyce klasycznej (ściślej – na II zasadzenie dynamiki Newtona)[36]:

F=dpdt=d(mv)dt.

Gdy prędkość ciała jest bliska prędkości światła, masa nie jest stała:

F=vdmdt+mdvdt.

Mnożąc obydwie strony przez ds:

Fds=vdmdsdt+mvdsdt=v2dm+mvdv.

Różniczkując wzór na masę relatywistyczną:

m(v)=vm01v2c2,
dm(v)dv=vmvc2v2,
dm=vmvc2v2dv,

otrzymujemy:

E=Fds=dm(c2v2)+v2dm=c2dm=d(mc2).

Konsekwencje

Przejawem tej równoważności jest tzw. deficyt masy (niedobór masy) pojawiający się zawsze, gdy układ oddaje energię; widoczny szczególnie, gdy zmiany energii przypadające na jednostkę masy są duże, np. w:

wchodzących w jego skład (energia wiązania jądra atomowego).

Wszystkie procesy fizyczne oddające energię tracą masę, np.:

Słońce oddając energię w postaci promieniowania elektromagnetycznego traci masę w tempie: m=L/c2=4109 kg/s.

Zobacz też

Uwagi

Szablon:Uwagi

Przypisy

Szablon:Przypisy

Bibliografia

Książki

Strony internetowe

Linki zewnętrzne

Szablon:Szablon nawigacyjny

Szablon:Kontrola autorytatywna

  1. Lev B. Okun, The concept of mass (mass, energy, relativity), Usp.Fiz.Nauk 158, s. 511–530; Sov. Phys. Usp. 32 (7), July 1989, © 1989 American Institute of Physics, s. 629.
  2. Gary Oas (2005), On the Abuse and Use of the Relativistic Mass, s. 2.
  3. Lev B. Okun, The concept of mass (mass, energy, relativity), Usp.Fiz.Nauk 158, s. 511–530; Sov. Phys. Usp. 32 (7), July 1989, © 1989 American Institute of Physics, s. 631.
  4. Lev B. Okun, The concept of mass (mass, energy, relativity), Usp.Fiz.Nauk 158, s. 511–530; Sov. Phys. Usp. 32 (7), July 1989, © 1989 American Institute of Physics, s. 635.
  5. Q. ter Spill, Mass & Energy, 's Gravesande Institute of Physics Education, Jan van Houtkade 26a, 2311 PD Leiden Netherlands, s. 47.
  6. M. Sawicki, Elementy teorii względności. Zajęcia fakultatywne w grupie matematyczno-fizycznej, 1975, s. 42.
  7. Szablon:Encyklopedia PWN
  8. Patrz zdanie na ostatniej stronie (s. 641) oryginalnego wydania artykułu Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? w Annalen der Physik, 1905, poniżej równania K0K1=L/V2v2/2. Patrz także zdanie pod ostatnim równaniem w tłumaczeniu na język angielski, K0K1=1/2L/c2v2 oraz komentarz na temat symboli użytych w tłumaczeniach w dodatku About this edition, który opublikowano po tłumaczeniu na język angielski [1].
  9. Patrz zdanie na ostatniej stronie (s. 641) oryginalnego wydania pracy Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? w „Annalen der Physik”, 1905, ponad równaniem K0K1=L/V2v2/2. Patrz także zdanie ponad ostatnim równaniem w tłumaczeniu na język angielski, K0K1=1/2L/c2v2 oraz komentarz na temat symboli użytych w tłumaczeniu w dodatku About this edition który opublikowano po tłumaczeniu na język angielski [2].
  10. M. Planck, Ber.d.Berl.Akad. 29, s. 542 (1907).
  11. J. Stark, Elementarquantum der Energie, Modell der negativen und der positiven Elekrizitat, Physikalische Zeitschrift 24, 8, s. 881 (1907).
  12. A. Einstein, „E=mc2: the most urgent problem of our time”, „Science Illustrated”, vol. 1 no. 1, April issue, s. 16–17, 1946 (pozycja 417 w „Bibliography” opracowanej przez M.C. Shields).
  13. M.C. Shields, Bibliography of the Writings of Albert Einstein to May 1951 w książce Albert Einstein: Philosopher-Scientist by Paul Arthur Schilpp (Editor) Albert Einstein Philospher – Scientist.
  14. Einstein Archives Online, rękopis artykułu Einsteina z roku 1946 Das Gesetz von der Aequivalenz von Masse und Energie (E = mc²) [3].
  15. 15,0 15,1 Szablon:Cytuj pismo
  16. 16,0 16,1 Szablon:Cytuj książkę
  17. Szablon:Cytuj książkę
  18. Szablon:Cytuj pismo
  19. Szablon:Cytuj książkę
  20. Szablon:Cytuj książkę
  21. Szablon:Cytuj stronę
  22. Helge Kragh, Fin-de-Siècle Physics: A World Picture in Flux, w: Quantum Generations: A History of Physics in the Twentieth Century, Princeton, NJ: Princeton University Press, 1999.
  23. Умов Н. А. Избранные сочинения. М.-Л., 1950. (Russian).
  24. Preston, S.T., Physics of the Ether, E. & F. N. Spon, London 1875.
  25. Bjerknes: S. Tolver Preston’s Explosive Idea E=mc2..
  26. MathPages: Who Invented Relativity?
  27. De Pretto O., Reale Instituto Veneto Di Scienze, Lettere Ed Arti, LXIII, II, s. 439–500, reprinted in Bartocci.
  28. Umberto Bartocci, Albert Einstein e Olinto De Pretto–La vera storia della formula più famosa del mondo, editore Andromeda, Bologna 1999.
  29. Szablon:Cytuj pismo
  30. John Worrall, Review of the book Conceptions of Ether. Studies in the History of Ether Theories by Cantor and Hodges, „The British Journal of the Philosophy of Science”, vol. 36, no 1, March 1985, s. 84. The article contrasts a particle ether with a wave-carrying ether, the latter was acceptable.
  31. Le Bon: The Evolution of Forces.
  32. Bizouard: Poincaré E=mc2 l’équation de Poincaré, Einstein et Planck.
  33. Szablon:Cytuj pismo
  34. Cztery metody wyprowadzenia relacji E=Mc2 oraz cztery i pół-sposobu jej rozumienia.
  35. Szablon:Cytuj książkę
  36. Fizyka dla Informatyków Wykład 12 Teoria względności Einsteina.


Błąd rozszerzenia cite: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>