Liczby gładkie
Liczba -gładka[1] – w teorii liczb, liczba naturalna, która nie ma dzielników pierwszych większych od [2]. Nazwa została prawdopodobnie użyta pierwszy raz przez Leonarda Adlemana w opisie algorytmu teorioliczbowego[3]. Gładkość liczb ma znaczenie w licznych problemach informatycznych, w szczególności tych związanych z kryptografią[1][2][4].
Przykłady
Liczba jest 5-gładka (oraz -gładka dla wszystkich ), ponieważ jej największym dzielnikiem pierwszym jest 5.
Początkowe liczby 2-gładkie (potęgi dwójki):
- 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 Szablon:OEIS.
Początkowe liczby 3-gładkie:
- 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 64, 72, 81, 96 Szablon:OEIS.
Początkowe liczby 5-gładkie (liczby Hamminga):
- 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54, 60, 64, 72, 75, 80 Szablon:OEIS.
Zastosowania
Liczby gładkie są powiązane z algorytmami szybkiej transformacji Fouriera (FFT), takimi jak algorytm Cooleya-Tukeya. Algorytmy te operują rekurencyjnie, wyrażając dyskretną transformatę Fouriera (DFT) ciągu o złożonej długości za pomocą DFT ciągów o długościach i . Jeśli długość wyjściowego ciągu jest liczbą -gładką dla małego , przypadkami bazowymi tej rekurencji są problemy obliczenia DFT o długościach wyrażonych małymi liczbami pierwszymi, dla których istnieją wydajne algorytmy[5]. Dla dużych liczb pierwszych konieczne jest użycie mniej efektywnych algorytmów, takich jak algorytm Bluesteina.
Liczby gładkie odgrywają istotną rolę w problemach informatycznych z dziedziny teorii liczb, które związane są ściśle z kryptografią. Najlepsze znane algorytmy faktoryzacji, takie jak algorytm Dixona, sito kwadratowe czy GNFS, wykorzystują liczby gładkie. Wyznaczenie logarytmu dyskretnego staje się łatwiejsze, gdy rząd grupy jest liczbą gładką (algorytm Pohliga–Hellmana)[4]. Co więcej, termin „liczba gładka” został prawdopodobnie użyty po raz pierwszy w kontekście znajdowania logarytmu dyskretnego w , gdy liczba logarytmowana jest -gładka i znane są wartości logarytmu dyskretnego dla jej dzielników pierwszych[3].
Na wiedzy o liczbach gładkich oparta jest funkcja skrótu Very Smooth Hash (VSH), której odporność na kolizje (trudność wygenerowania dwóch wiadomości o takim samym skrócie) wynika z trudności znalezienia pierwiastka kwadratowego z liczby gładkiej modulo . Metoda ta jest wydajniejsza i bardziej praktyczna w porównaniu do wielu funkcji skrótu, których odporność na kolizje można ściśle wykazać[4][6].
Rozmieszczenie
Niech będzie liczbą liczb -gładkich nie większych od . W 1930 roku Dickman zaprezentował heurystyczny dowód, że Szablon:Wzór gdzie jest funkcją Dickmana – unikalnym ciągłym rozwiązaniem równania różniczkowego przy założeniu, że dla [7][8]. Na podstawie późniejszych wyników de Bruijina i Hildebranda wiadomo, że dla równość Szablon:Wzór zachodzi, gdy Szablon:Wzór Ponadto wspomniane ograniczenie jest prawdziwe dla wszystkich Szablon:Wzór wtedy i tylko wtedy, gdy prawdziwa jest hipoteza Riemanna[4][8].
Dla małych wartości możemy wyprowadzić inne ograniczenia. Gdy spełniona jest nierówność , mamy Szablon:Wzór gdzie jest liczbą liczb pierwszych nie większych od [8].
Przypisy
Linki zewnętrzne
- Szablon:MathWorld [dostęp 2022-07-02].