Ożywienie kwantowe funkcji falowej

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania
Pełne i dokładne ożywienie semi-Gausowskiej funkcji falowej w dwu-wymiarowej nieskończonej studni potencjału podczas ewolucji czasowej. W międzyczasie następują ożywienia ułamkowe kiedy to przeskalowany kształt początkowej funkcji falowej powiela się całkowita liczbę razy na całej powierzchni studni.

Ożywienie kwantowe funkcji falowej lub ożywienie kwantowe (ang. quantum revival of the wave function lub quantum revival) – w mechanice kwantowej[1] periodyczne w czasie powtarzanie się funkcji falowej z jej stanu początkowego podczas ewolucji czasowej albo wiele razy w przestrzeni jako wielokrotnie symetrycznie występujące i przeskalowane części w kształcie funkcji początkowej (ożywienie ułamkowe) lub dokładnie albo w przybliżeniu do jej wartości na początku ewolucji czasowej (ożywienie pełne).

Zjawisko ożywień jest najłatwiej obserwowalne dla funkcji falowych będących dobrze zlokalizowanymi paczkami falowymi na początku ewolucji czasowej, np. w atomie wodoru. Dla wodoru ożywienia ułamkowe ujawnia się jako wielokrotne gaussowskie garby prawdopodobieństwa zlokalizowane na kole otaczającym proton wyglądające jak oryginalna funkcja Gaussa, ale w zmniejszeniu[2]. Pełne ożywienie jest dokładne dla nieskończonej studni potencjału, kwantowego oscylatora harmonicznego oraz dla atomu wodoru w przypadku funkcji o skończonym rozwinięciu, podczas gdy dla krótszych czasów jest przybliżone dla atomu wodoru i wielu innych układów kwantowomechanicznych.

Ożywienie kwantowe zostało zaobserwowane doświadczalnie dla kondensatu Bosego-Einsteina w potencjale sieci optycznej[3][4].

Przykład – dowolna obcięta funkcja układu kwantowego z energiami wymiernymi

Rozważmy układ kwantowy z energiami Ei i stanami własnymi ψi

Hψi=Eiψi

i niech energie te będą wymiernymi częściami pewnej stałej C

Ei=CMiNi,

np. dla atomu wodoru Mi=1,Ni=i2,C=13,6eV.

Wtedy obcięte (do Nmax stanów) rozwiązanie równania Schrōdingera zależnego od czasu jest dane przez

Ψ(t)=i=0NmaxaieiEit/ψi.
Superożywienie (ang. Superrevival) inwersji (powrót przybliżonych ożywień do oryginalnego kształtu) w modelu Jaynesa-Cummingsa, kiedy to dokładne widmo energetyczne w rezonansie wokół średniej liczby fotonów n0=100 jest przybliżone wielomianem drugiego stopnia liczby kwantowej fotonu n, E(n)=aδn2+bδn+c, δn=nn0.

Niech Lcm będzie najmniejszą wspólną wielokrotnością wszystkich liczb Ni, a Lcd największym wspólnym dzielnikiem wszystkich liczb Mi, wtedy dla każdego Ni dzielenie Lcm/Ni jest liczba całkowitą, dla każdego Mi dzielenie Mi/Lcd jest liczba całkowitą a 2πMiLcm/(NiLcd) jest całkowitą wielokrotnością kąta pełnego 2π i

Ψ(t)=Ψ(t+T)

po czasie pełnego ożywienia

T=2πLcdCLcm.

Dla układu kwantowego tak małego jak wodór i Nmax tak małego jak 100 Lcm jest tak duża, że może upłynąć 1,51058 lat, zanim ten układ odżyje w pełni.

W zależności od stanu początkowego, podczas tego czasu wielokrotnie układ może być w stanie ψ(t) bardzo bliskim stanowi początkowemu, który eksperymentalnie będzie nierozróżnialny (przy obecnym zaawansowaniu technik eksperymentalnych) od stanu początkowego.

Uderzającą konsekwencją jest to że żaden komputer o skończonej bitowo długości słowa nie może propagować dokładnie funkcji falowej przez dowolnie długi czas. Jeśli liczba procesorowa jest n-bitową liczbą zmienooprzecinkową wtedy energia jest na przykład równa 2,34576893 = 234576893/100000000 i jest dokładnie liczbą wymierną i pełne ożywienie następuje dla dowolnej funkcji falowej dowolnego układu kwantowego po czasie t/2π=100000000 która jest maksymalnym jej wykładnikiem, ale nie musi to być prawdą dla wszystkich układów kwantowych lub inaczej wszystkie układy kwantowe ulegają dokładnemu i pełnemu ożywieniu numerycznie.

W układzie fizycznym którego energie są wymierne, tzn. kiedy istnieje dokładne pełne ożywienie funkcji falowej jego istnienie natychmiast udowadnia tzw. kwantowe twierdzenie Poincaré o powrocie systemu fizycznego do stanu początkowego[5] i czas pełnego ożywienia jest równy czasowi powrotu Poincaré. Podczas kiedy liczby wymierne są zbiorem gęstym w zbiorze liczb rzeczywistych a dowolna funkcja liczby kwantowej może być przybliżona dowolnie dokładnie przez aproksymanty Padé ze współczynnikami o dowolnej dokładności dziesiątkowej w ciągu dowolnie długiego czasu każdy system kwantowy (podobnie jak klasyczny) ożywa prawie dokładnie, tzn. wraca dowolnie blisko swojego stanu początkowego. Znaczy to także ze powrót Poincaré i pełne ożywienie funkcji falowej są matematycznie tym samym, ale jest powszechnie przyjęte że powrót jest nazywany pełnym ożywieniem jeśli zachodzi po realistycznym i fizycznie mierzalnym czasie który możliwy jest do wyznaczenia przez realistyczny przyrząd pomiarowy a to zdarza się tylko dla bardzo specjalnego widma energetycznego które posiada podstawowy, duży odstęp energetyczny i którego energie są dowolnie całkowitymi i niekoniecznie równo rozłożonymi (jak dla oscylatory harmonicznego) wielokrotnościami.

Przypisy

Szablon:Przypisy