Hipoteza Elliotta-Halberstama
Hipoteza Elliotta-Halberstama jest problemem otwartym teorii liczb. Hipoteza, nazwana po Peterze D.T.A. Elliocie i Heinim Halberstamie, dotyczy szacowania ilości liczb pierwszych występujących w ciągach arytmetycznych. Treść hipotezy została sformułowana po raz pierwszy w 1968 r.[1]
Hipoteza należy do dziedziny teorii sit. Jej prawdziwość miałaby ogromny wpływ na postępy w ustalaniu najmniejszej różnicy występującej między liczbami pierwszymi nieskończenie wiele razy.
Treść hipotezy
Niech oznacza funkcję liczącą liczby pierwsze, a oznacza funkcję liczącą liczby pierwsze w ciągu arytmetycznym Oznaczmy
gdzie oznacza największy wspólny dzielnik liczby i a to tocjent Eulera. Wówczas dla każdej stałej i stałej zachodzi zależność
dla i wszystkich (przy czym stała uwzględniona w notacji dużego O zależy jedynie od i ).
Modyfikacje i znane wyniki
Treść hipotezy, dla ustalonej stałej zwykle bywa skracana do [2].
została udowodniona dla wszystkich przez Enrico Bombieriego i Iwana Winogradowa (wynik ten znany jest powszechnie jako twierdzenie Bombieriego-Winogradowa). Dodatkowo wiadomo, że dla nie jest prawdziwa.
Motohashi-Pintz-Zhang
Yoichi Motohashi, János Pintz i Zhang Yitang zaproponowali i, w szczególnych przypadkach, udowodnili hipotetyczną zależność
gdzie a oznacza zbiór liczb bezkwadratowych o dzielnikach pierwszych w Dodatkowo przyjmujemy
tzn. pomijamy maksimum występujące w pierwotnej hipotezie, ale pozwalamy, aby klasa reszt była zależna od pod warunkiem, że gdzie
tzn. to iloczyn wszystkich liczb pierwszych w
Powyższa hipoteza, znana w literaturze jako szacowanie Motohashiego-Pintza-Zhanga, dla ustalonych i bywa zapisywana skrótowo jako [2]. Wiadomo, że jest prawdą dla takich, że [2].
Uogólniona hipoteza Elliotta-Halberstama
Niech oznacza liczbę dodatnich dzielników całkowitych liczby Dodatkowo, niech będą wartościami zależnymi od takimi, że i oraz dla gdzie i oznaczają notację asymptotyczną.
Załóżmy, że funkcje i różne od 0 spełniają zależności
oraz
gdzie oznaczają pewne stałe. Załóżmy dodatkowo, że spełnia ograniczenie typu Siegela-Walfisza,
dla dowolnych oraz Oznaczmy
Wówczas
dla gdzie oznacza splot Dirichleta funkcji i
Powyższą treść zwykle zapisuje się jako (z ang. generalised Elliott-Halberstam conjecture), a ogólne sformułowanie „uogólniona hipoteza Elliotta-Halberstama” dotyczy prawdziwości dla wszystkich [2].
Wiadomo, że jest prawdziwa dla jako uogólnione twierdzenie Bombieriego-Winogradowa[3].
Znaczenie hipotezy
Hipoteza Elliota-Halberstama – zarówno pierwotna, jak i uogólniona – mają ogromny wpływ na wyniki dotyczące różnic między liczbami pierwszymi.
Oznaczmy
gdzie oznacza -tą liczbę pierwszą.
Znane są następujące wyniki[2].
| (wykazane bezwarunkowo) | (zakładając hipotezę EH) | (zakładając GEH) | |
|---|---|---|---|
| 1 | 246 | – | 6 |
| 2 | 398 130 | 270 | 252 |
| 3 | 24 797 814 | 52 116 | – |
| 4 | 1 431 556 072 | 474 266 | – |
| 5 | 80 550 202 480 | 4 137 854 | – |
| – |