Grupa Baera-Speckera

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

Grupa Baera-Speckera lub Speckera – przykład nieskończonej grupy abelowej będącej elementem konstrukcyjnym w teorii strukturalnej tego rodzaju grup. Definiuje się ją jako grupę wszystkich ciągów liczb całkowitych z dodawaniem po składowych, tzn. iloczyn przeliczalnie wielu egzemplarzy .

W 1937 roku Reinhold Baer dowiódł, grupa ta nie jest grupą abelową wolną[1]; z kolei w 1950 roku Ernst Specker udowodnił, że każda przeliczalna podgrupa tej grupy jest grupą abelową wolną[2].

Grupa homomorfizmów z grupy Baera-Speckera w grupę abelową wolną skończonej rangi jest grupą abelową wolną przeliczalnej rangi. Stanowi to kolejny dowód na to, że grupa nie jest wolna.

Przypisy

Szablon:Przypisy

Bibliografia