Kongruencje Reesa

Z testwiki
Wersja z dnia 23:34, 14 sty 2024 autorstwa imported>EmptyBot (int.)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacji Przejdź do wyszukiwania

Kongruencje Reesa – rodzaj kongruencji w teorii półgrup. Nazwa pochodzi od nazwiska Davida Reesa. Kongruencje Reesa zadawane są przez ideały półgrupy, podobnie jak kongruencje w pierścieniach. Jednak nie wszystkie kongruencje w półgrupach są kongruencjami Reesa.

Definicja

Niech S będzie półgrupą, a I jej ideałem. Konguencją Reesa zadaną przez I jest

ρI=(I×I){(x,x)|xS}

Homomorfizm ϕ:ST jest homomorfizmem Reesa, jeżeli jądro ϕ jest kongruencją Reesa.