Roztwór wodny

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

Roztwór wodnyroztwór, w którym rozpuszczalnikiem jest woda. Substancje chemiczne rozpuszczone w wodzie oznacza się przyrostkiem aq (z łac. aqueus – wodny), często w indeksie dolnym, np. X(aq).

Roztwory wodne niektórych substancji zwyczajowo nazywane są „wodami” z odpowiednim przymiotnikiem, np. woda amoniakalna czy woda wapienna.

Podstawy termodynamiczne
rozpuszczania w wodzie
[1] Zmiany entalpii podczas rozpuszczania substancji w wodzie opisać można równaniem:

ΔHr = EHh
gdzie E – energia sieci krystalicznej; ΔHh – zmiana entalpii w wyniku hydratacji

Jeśli wynikowa wartość ΔHr > 0, to układ pobiera ciepło w trakcie procesu rozpuszczania (sytuacja typowa dla substancji krystalicznych), a jeśli ΔHr < 0, to układ wydziela ciepło (np. podczas rozpuszczania wielu substancji niekrystalicznych, takich jak ciecze i gazy). Rozpuszczanie może przebiegać samorzutnie pomimo dodatniej wartości ΔHr, gdy procesowi towarzyszy wzrost entropii układu i wynikowa zmiana entalpii swobodnej jest ujemna:

ΔG = Hr -TΔS
gdzie T – temperatura bezwzględna; ΔS – zmiana entropii układu

Na przykład dla chlorku potasu w temp. 25 °C: ΔHr = 14 kJ×mol−1 (wartość dodatnia ⇒ układ pobiera ciepło); ΔS = 0,075 kJ×mol−1×K−1 (wartość dodatnia ⇒ wzrost entropii układu); ΔG = –8,30 kJ×mol−1 (wartość ujemna ⇒ rozpuszczanie jest korzystne termodynamicznie).

Pierwsza powłoka solwacyjna jonu sodu rozpuszczonego w wodzie

Fizykochemia roztworów wodnych

Woda jest substancją silnie polarną (względna przenikalność elektryczna εr ≈ 80 (w 20 °C); moment dipolowy = 1,84 D)[2]. Zgodnie z prawem Coulomba siła przyciągania ładunków q1 i q2 w ośrodku o stałej dielektrycznej ε opisuje zależność:

F=14πε0εrq1q2r2

Szczególnie duża stała dielektryczna wody osłabia więc oddziaływanie elektrostatyczne między ładunkami[3], dzięki czemu woda jest dobrym rozpuszczalnikiem substancji polarnych (zgodnie z zasadą podobne rozpuszcza podobne)[4], np. soli, kwasów, zasad, alkoholi, amin, cukrów i in. Słabo rozpuszczają się natomiast substancje niepolarne, np. węglowodory i tłuszcze. Substancje słabo rozpuszczalne w wodzie mogą tworzyć roztwory koloidalne i zawiesiny.

Podczas rozpuszczania w wodzie elektrolitów (soli, kwasów i zasad) ulegają one dysocjacji na jony. Silne elektrolity całkowicie jonizują się w wodzie, w odróżnieniu od słabych elektrolitów, których jonizacji ulega tylko niewielka część cząsteczek. Roztwory elektrolitów dobrze przewodzą prąd elektryczny. Wodne roztwory substancji niebędących elektrolitami (np. cukrów, alkoholi i pierwiastków chemicznych niereagujących z wodą) nie przewodzą prądu. Niektóre substancje w roztworach wodnych mogą ulegać hydrolizie.

Woda ulega autodysocjacji zgodnie z równaniem:

Szablon:Chem2

W wodnych roztworach kwasów i zasad (w ujęciu Arrheniusa) oraz niektórych soli następuje zaburzenie tej równowagi, wskutek czego zmienia się stężenie jonów wodorowych i wodorotlenowych, a roztwór taki wykazuje odczyn kwasowy lub zasadowy. Miarą kwasowości/zasadowości roztworu wodnego jest skala pH.

Podczas rozpuszczania ciał krystalicznych następuje zniszczenie ich struktury krystalicznej, czemu towarzyszą efekty cieplne[5]. Siłą napędową tego procesu jest solwatacja (a dokładniej – hydratacja) cząsteczek przechodzących do roztworu[1].

Cząsteczki wody mogą skutecznie solwatować zarówno kationy i atomy elektrofilowe cząsteczek (poprzez oddziaływanie elektrostatyczne), jak i aniony i atomy nukleofilowe (poprzez wiązania wodorowe)[6]. Stopień hydratacji jonów może decydować o rozpuszczalności danej substancji, np. siarczan magnezu jest dobrze rozpuszczalny w wodzie (33,5 g/100 g H2O w 20 °C), siarczan wapnia słabo (0,24 g/100 g), a siarczan baru jest praktycznie nierozpuszczalny (0,00031 g/100 g)[7], pomimo że na podstawie energii sieci krystalicznej należałoby oczekiwać sytuacji odwrotnej[8]. Różnice te przypisuje się różnej hydratacji kationów[9]; ich liczby hydratacyjne (określające liczbę cząsteczek wody zaasocjowanych wokół jonu) wynoszą: Szablon:Chem2 ok. 15[9], Szablon:Chem2 5,9[10] i Szablon:Chem2 4,2[10].

Miarą rozpuszczalności substancji jonowych w wodzie jest iloczyn rozpuszczalności. Rozpuszczalność większości ciał stałych i cieczy w wodzie zwiększa się wraz z temperaturą, natomiast rozpuszczalność gazów maleje. Rozpuszczaniu niektórych substancji w wodzie może towarzyszyć kontrakcja objętości (np. rozpuszczanie etanolu). Większość substancji ma ograniczoną rozpuszczalność w wodzie, jednak niektóre ciecze są mieszalne z wodą, czyli tworzą roztwory wodne w pełnym zakresie stężeń 0–100% (np. alkohol etylowy).

Roztwory wykazują wyższą temperaturę wrzenia i niższą temperaturę krzepnięcia niż czysta woda. Miarami tych zmian są odpowiednio: stała ebulioskopowa wynosząca dla wody 0,515 kg×K×mol−1 i stała krioskopowa wynosząca dla wody 1,853 kg×K×mol−1[11].

Roztwory wodne w naturze

Woda jest rozpuszczalnikiem najpowszechniej występującym na Ziemi i zawsze jest roztworem pewnych ilości różnych substancji. Woda morska zawiera w największym stężeniu kationy sodu (Szablon:Chem2) i magnezu (Szablon:Chem2) oraz aniony chlorkowe (Szablon:Chem2) i siarczanowe (Szablon:Chem2), które łącznie nadają wodzie morskiej intensywnie gorzki lub gorzko-słony smak i powodują, że nie nadaje się ona do picia. Woda słodka zawiera znacznie mniej soli i są to głównie wodorowęglany wapnia i magnezu, odpowiadające za twardość wody. Najmniej substancji rozpuszczonych zawiera woda opadowa – głównie gazy obecne w powietrzu, przede wszystkim dwutlenek węgla, tlen i azot.

Zobacz też

Przypisy

Szablon:Przypisy