Teoria punktów stałych

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

Szablon:Dopracować Szablon:Grafika rozwinięta Teoria punktów stałych – dział matematyki zajmujący się równaniami postaci f(x)=x, gdzie f jest pewną funkcją. Podstawowe zagadnienie tej teorii to pytanie, przy jakich założeniach o zbiorze X i o funkcji f:XX powyższe równanie ma rozwiązanie, zwane punktem stałym. Bada się też własności zbiorów jego rozwiązań.

Problem ten ma wiele wariantów, gdyż:

Przez to teoria punktów stałych przenika się z innymi dyscyplinami jak analiza, topologia czy teoria porządku.

Udowodniono szereg twierdzeń o punkcie stałym – o istnieniu takich argumentów dla pewnych funkcji. Pierwsze z nich ogłoszono najpóźniej na początku XX wieku; przykładowo z 1910 roku pochodzi twierdzenie Brouwera[1]. Podano też twierdzenia mówiące, że to zbiór ma własność punktu stałego w sensie topologii; przykład to twierdzenie Schaudera-Tichonowa. W latach 20. XXI wieku istnieje osobne czasopismo poświęcone takim zagadnieniom[2].

Miejsce wśród innych dyscyplin

Teoria punktów stałych nie jest osobną kategorią w spisie MSC 2020, jednak są w nim działy zawierające w nazwie punkty stałe, m.in. w sekcjach:

  • 32: Several complex variables and analytic spaces,
    • 32H: Holomorphic mappings and correspondences,
  • 37: Dynamical systems and ergodic theory,
    • 37C: Smooth dynamical systems: general theory,
    • 37J: Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems,
  • 47: Operator theory,
  • 54: General topology,
  • 55: Algebraic topology,
    • 55M: Classical topics in algebraic topology,
  • 58: Global analysis, analysis on manifolds[3].

Przypisy

Szablon:Przypisy

Literatura

Szablon:Działy matematyki

Szablon:Kontrola autorytatywna

  1. L.E.J. Brouwer, Ueber eineindeutige, stetige Transformationen von Flächen in sich, „Math. Ann.”, 69 (1910), s. 176–180.
  2. Journal of Fixed Point Theory and Applications, springer.com [dostęp 2023-08-25].
  3. Szablon:Otwarty dostęp 2020 Mathematics Subject Classification Szablon:Lang, mathscinet.ams.org [dostęp 2023-08-25].