Półokrąg


Półokrąg – łuk okręgu wyznaczony przez kąt środkowy o mierze 180°. Końce półokręgu leżą więc na jednej średnicy. Promieniem półokręgu jest promień okręgu, którego częścią jest półokrąg.
Twierdzenie o kącie wpisanym w półokrąg
Szablon:Osobny artykuł Twierdzenie to, przypisywane Talesowi, mówi że każdy kąt wpisany w półokrąg oparty na jego podstawie jest kątem prostym.
Wyznaczanie średnich
Wykorzystując właściwości półokręgu, można konstrukcyjnie wyznaczyć średnie z dwóch liczb i
Średnia arytmetyczna
Należy skonstruować półokrąg o podstawie równej Promień tego półokręgu jest średnią arytmetyczną z obu liczb (rys. 2 – czerwona linia)
Średnia geometryczna
Konstruując półokrąg taki sam jak w poprzednim przykładzie, należy narysować odcinek o początku w miejscu zetknięcia się odcinków o długościach i prostopadły do podstawy, o końcu leżącym na łuku półokręgu. Długość tego odcinka jest równa średniej geometrycznej liczb i (rys. 2 – brązowa linia)
Można to wykazać, wykorzystując twierdzenie Pitagorasa oraz fakt, że kąt oparty na odcinku o długości jest kątem prostym.
Zobacz też
Bibliografia
Linki zewnętrzne
Szablon:Okręgi Szablon:Funkcje elementarne