Geometria analityczna


Geometria analityczna – dział geometrii stosujący metody algebraiczne. Złożone rozważania geometryczne zostają w geometrii analitycznej sprowadzone do rozwiązywania układów równań, które opisują badane figury. Przedmiotem badań geometrii analitycznej jest zasadniczo przestrzeń euklidesowa i własności jej podzbiorów, choć wiele wyników można uogólnić na dowolne, skończenie wymiarowe przestrzenie liniowe.
Historia
Pierwsze wyniki w tej dziedzinie pochodzą z wieku XVII i związane są z nazwiskami Fermata, Pascala oraz Kartezjusza, którzy jako pierwsi punktom na płaszczyźnie przypisali pary liczb nazywane ich współrzędnymi, a pewne zależności między współrzędnymi w danym układzie współrzędnych utożsamili z krzywymi na płaszczyźnie. Na przykład równanie przedstawia prostą, a równanie dla k ≠ 0 – hiperbolę.
Za umowną datę powstania geometrii analitycznej przyjmuje się rok 1637, gdy ukazała się książka Geometrie Kartezjusza, w której wprowadził kartezjański układ współrzędnych. Obecną postać geometrii analitycznej nadał Leonhard Euler w klasycznym dziele Introductio in analysin infinitorum[1], choć sama nazwa pojawiła się dopiero na początku wieku XIX.
Geometria analityczna dała podstawy do rozwoju geometrii różniczkowej i algebraicznej.
Zobacz też
Przypisy
Linki zewnętrzne
- Algebra liniowa z geometrią analityczną (materiały dydaktyczne MIMUW na studia informatyczne I stopnia)
- Szablon:Pismo Delta
- Szablon:MathWorld [dostęp 2023-06-01].
- Szablon:Otwarty dostęp Analytic geometry Szablon:Lang, Encyclopedia of Mathematics, encyclopediaofmath.org, [dostęp 2023-06-18].