Czynnik Bayesa

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

Czynnik Bayesa (BF, ang. Bayes factor) – stosunek prawdopodobieństwa uzyskania danych obserwacji w dwóch porównywanych modelach. Pozwala on na porównanie, w jakim stopniu dane świadczą na rzecz dwóch alternatywnych hipotez, i jest jedną z metod weryfikowania hipotez statystycznych we wnioskowaniu bayesowskim[1][2].

Definicja

Zakładając, że porównujemy dwa modele M1 i M2 (wraz z wektorami parametrów θ1 i θ2) na podstawie zbioru obserwacji D, ich prawdopodobieństwo można porównać przy użyciu czynniku Bayesa K:

K=Pr(D|M1)Pr(D|M2)=Pr(θ1|M1)Pr(D|θ1,M1)dθ1Pr(θ2|M2)Pr(D|θ2,M2)dθ2.

Spotyka się też notację BF10 i BF01, odpowiadające czynnikom Bayesa testującym, odpowiednio, hipotezę alternatywną H1, lub hipotezę zerową H0, przeciwko sobie nawzajem, analogicznie do procedury częstościowej weryfikacji hipotez statystycznych.

Interpretacja

Wartości K>1 świadczą na rzecz hipotezy M1, wartości K<1 świadczą na rzecz hipotezy M2. Dla porównania, w podejściu częstościowym, testowana jest jedynie hipoteza zerowa, a o prawdziwości hipotezy alternatywnej można wnioskować jedynie pośrednio. Dwie popularne skale interpretacyjne dla wartości K stworzyli Harold Jeffreys, oraz Hass i Raftery[3][4]:

K (Jeffreys) K (Hass i Raftery) Siła dowodowa
< 1 < 1 negatywna (wspiera M2)
od 1 do 101/2 (≈3,16) od 1 do 3 warta co najwyżej wzmianki
od 101/2 (≈3,16) do 10 od 3 do 20 znaczna
od 10 do 103/2 (≈31,62) od 20 do 150 silna
od 103/2 (≈31,62) do 100 > 150 bardzo silna
>100 rozstrzygająca

Czynnik Bayesa jest adekwatny do zastosowań epistemologicznych – gdy badacz chce określić relatywne, subiektywne prawdopodobieństwo hipotezy. Do celów podejmowania decyzji służą inne narzędzia, uwzględniające koszt popełnienia błędów, takie jak metody statystyki częstościowej, lub metody bayesowskie z funkcjami strat.

Wartość czynnika Bayesa porównującego hipotezę zerową z hipotezą alternatywną jest w znacznym stopniu współzmienna z odpowiadającą mu P-wartością. Jego przewagą jest w tym przypadku dokładniejsze rozstrzyganie wartości dowodowej wyników, które są bliskie krytycznego poziomu istotności[5]. Przy wysokiej mocy statystycznej badania, mogą być bardziej prawdopodobne dla hipotezy zerowej, jednak w procedurze wnioskowania częstościowego są uznawane za przesłankę na rzecz hipotezy alternatywnej[6]. Czynnik Bayesa pozwala też na łatwe wykonywanie innych porównań, np. minimalnej istotnej klinicznie różnicy.

Przypisy

Szablon:Przypisy