L-redukcja

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania

L-redukcja – transformacja problemów optymalizacyjnych, która zachowuje własności aproksymacyjne. L-redukcje odgrywają podobną rolę w badaniach nad aproksymowalnością problemów optymalizacyjnych, jak transformacje wielomianowe w badaniach nad złożonością obliczeniową problemów decyzyjnych.

Definicja

Niech A i B będą problemami optymalizacyjnymi a cA i cB ich odpowiednimi funkcjami kosztu. Parę funkcji R i S nazywamy L-redukcją problemu A do B jeśli spełnione są następujące warunki:

  • funkcje R i S da się obliczyć w logarytmicznej pamięci,
  • jeśli x jest instancją problemu A, to R(x) jest instancja problemu B,
  • jeśli y jest rozwiązaniem R(x) to S(y) jest rozwiązaniem x,
  • istnieje taka dodatnia stała α, że
OPT(R(x))αOPT(x)
  • istnieje taka dodatnia stała β, że
|OPT(x)cA(S(y))|β|OPT(R(x))cB(y)|

Własności

Można pokazać, że jeśli (R, S) jest L-redukcją problemu A do B i istnieje wielomianowy algorytm ε-aproksymacyjny dla A to istnieje wielomianowy algorytm δ-aproksymacyjny dla B gdzie:

δ=αβϵ1ϵ

gdzie α i β są stałymi z definicji powyżej. Z tego wynika, ze jeśli istnieje wielomianowy schemat aproksymacji dla A to istnieje wielomianowy schemat aproksymacji dla B.

Zobacz też