Tarcie wewnętrzne

Z testwiki
Wersja z dnia 20:48, 1 maj 2019 autorstwa imported>Beno (WP:SK+Bn)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacji Przejdź do wyszukiwania

Tarcie wewnętrzne – w fizyce ciała stałego – miara strat energii mechanicznej zachodzącej w ośrodku. Także zbiorcza nazwa mechanizmów prowadzących do powstania takich strat. Pomiar i analiza tarcia wewnętrznego jest domeną spektroskopii mechanicznej. Szablon:Spis treści W fizyce płynów tarcie wewnętrzne jest utożsamiane z lepkością, lub jest używane dla określenia mechanizmów powodujących lepkość. Opory tarcia wewnętrznego wynikają z istnienia sił kohezji i zależą od swobody przemieszczania się cząsteczek.

Definicja

W fizyce ciała stałego tarcie wewnętrzne, oznaczane zwykle przez[uwaga 1] Q1, jest zdefiniowane przez

Q1=ΔW2πW,

gdzie:

W – energia zgromadzona w jednostce objętości drgającego ośrodka,
ΔW – energia tracona w jednostce objętości drgającego ośrodka w czasie jednego okresu.

W przypadku małego tłumienia tarcie wewnętrzne jest związane z logarytmicznym dekrementem tłumienia swobodnych drgań ośrodka Λ poprzez równanie

Q1=Λπ.

Mechanizmy powodujące powstanie tarcia wewnętrznego

Istnieje wiele mechanizmów mogących prowadzić do strat energii mechanicznej w ciałach stałych. Znaczne straty energii stwierdza się w temperaturach w pobliżu przemian fazowych. Kilka mechanizmów związanych jest z defektami sieci krystalicznej: punktowymi (w tym z domieszkami), dyslokacjami i z defektami płaskimi (w temperaturach bliskich temperaturze topnienia). Najczęściej spotykane mechanizmy tarcia wewnętrznego to:

Mechanizmy związane z przemianami fazowymi

W pobliżu temperatury przemiany fazowej obserwuje się znaczne tarcie wewnętrzne, pochodzące od zmian parametrów uporządkowania pod wpływem naprężeń.

Mechanizmy związane z defektami punktowymi

Efekt Snoeka

Polega na migracji atomów międzywęzłowych, a zaobserwowano go w kryształach o sieci regularnej przestrzennie centrowanej. Jest używany do określania koncentracji atomów węgla w stali.

Efekt Finkelsteina-Rozina

Powstaje na skutek reorientacji pary złożonej z dwu defektów, atomu domieszki substytucyjnej lub wakansu i atomu międzywęzłowego.

Relaksacja Zenera

Jest wynikiem ruchu atomów (zmiany orientacji par) w stopach substytucyjnych.

Relaksacja Gorskiego

Powstaje na skutek dyfuzji defektów w materiałach poddanych niejednorodnym naprężeniom.

Mechanizmy związane z dyslokacjami

Relaksacja Bodoniego

Jest skutkiem drgań odcinków dyslokacji. Występuje w materiałach deformowanych i zmniejsza się ze wzrostem koncentracji domieszek.

Maksima Hasigutiego

Są rezultatem oddziaływania dyslokacji z defektami punktowymi. Występują w materiałach deformowanych.

Histereza dyslokacyjna

Występuje w wyniku ruchu fragmentu dyslokacji zakotwiczonego pomiędzy dwoma defektami punktowymi.

Relaksacja termosprężysta

Występuje we wszystkich ciałach. Ściskana część ciała się rozgrzewa, a rozciągana oziębia. Powoduje to wystąpienie strumienia ciepła, prowadzącego do strat energii.

Uwagi

Szablon:Uwagi

Bibliografia

  • Szablon:Cytuj książkę
  • Władysław Chomka, Mechanizmy tarcia wewnętrznego w metalach, w: Fizyka i chemia metali, tom 2, „Prace Naukowe Uniwersytetu Śląskiego” 165, 1977, s. 80–113.


Błąd rozszerzenia cite: Istnieje znacznik <ref> dla grupy o nazwie „uwaga”, ale nie odnaleziono odpowiedniego znacznika <references group="uwaga"/>