Plik:Amoeba4 400.png

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania
Rozmiar pierwotny (1896 × 1917 pikseli, rozmiar pliku: 263 KB, typ MIME: image/png)

Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.

Opis

Opis
English: The amoeba of P(z, w)=50 z3 +83 z2 w+24 z w2 +w3+392 z2+414 z w+50 w2 -28 z +59 w-100
Data
Źródło Praca własna
Autor User:Oleg Alexandrov
Inne wersje
Ta ilustracja ma także wersję wektorową („SVG”).
Zaleca się wykorzystywanie w galeriach dostępnej wersji wektorowej zamiast obecnej.

File:Amoeba4 400.png → File:Amoeba4 400.svg

Więcej o grafice wektorowej przeczytasz w artykule Przenoszenie grafik Commons do formatu SVG.
Dostępna jest także informacja o obsłudze grafik SVG przez MediaWiki.

W innych językach
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
Nowa grafika

Licencja

Public domain Ja, właściciel praw autorskich do tej pracy, udostępniam ją jako własność publiczną. Dotyczy to całego świata.
W niektórych krajach może nie być to prawnie możliwe, jeśli tak, to:
Zapewniam każdemu prawo do użycia tej pracy w dowolnym celu, bez żadnych ograniczeń, chyba że te ograniczenia są wymagane przez prawo.

Source code

To jest logo: MATLAB – program komputerowy
To jest logo: MATLAB – program komputerowy
This media was created with MATLAB (program komputerowy)
Here is a listing of the source used to create this file.

Deutsch  English  +/−

% find the amoeba of the polynomial
% p(z, w)=50 z^3+83 z^2 w+24 z w^2+w^3+392 z^2+414 z w+50 w^2-28 z +59 w-100
% See http://en.wikipedia.org/wiki/Amoeba_(mathematics).

function main()

   figure(3); clf; hold on;
   axis equal; axis off;
   axis([-4.5, 5, -3.5, 6]); 
   fs = 20; set(gca, 'fontsize', fs);
   ii=sqrt(-1);
   tiny = 100*eps;
   
   Ntheta = 500; % for Ntheta=500 the code will run very slowly, but will get a good resolution
   NR=      Ntheta; 

   % R is a vector of numbers, exponentiall distributed
   A=-5; B=5;
   LogR  = linspace(A, B, NR);
   R     = exp(LogR);

   % a vector of angles, uniformly distributed
   Theta = linspace(0, 2*pi, Ntheta);

   degree=3;
   Rho = zeros(1, degree*Ntheta); % Rho will store the absolute values of the roots
   One = ones (1, degree*Ntheta);

   % play around with these numbers to get various amoebas
   b1=1;  c1=1; 
   b2=3;  c2=15;
   b3=20; c3=b3/5; 
   d=-80; e=d/4;
   f=0; g=0;
   h=20; k=30; l=60;
   m=0; n = -10; p=0; q=0;
   
%  Draw the 2D figure as union of horizontal slices and then union of vertical slices.
%  The resulting picture achieves much higher resolution than any of the two individually.
   for type=1:2

	  for count_r = 1:NR
		 count_r
		 
		 r = R(count_r);
		 for count_t =1:Ntheta
			
			theta = Theta (count_t);

			if type == 1
			   z=r*exp(ii*theta);

%                         write p(z, w) as a polynomial in w with coefficients polynomials in z 
%                         first comes the coeff of the highest power of w, then of the lower one, etc.
			   Coeffs=[1+m,
				   c1+c2+c3+b1*z+b2*z+b3*z+k+p*z,
				   e+g+(c1+b1*z)*(c2+b2*z)+(c1+c2+b1*z+b2*z)*(c3+b3*z)+l*z+q*z^2,
				   d+f*z+(c3+b3*z)*(e+(c1+b1*z)*(c2+b2*z))+h*z^2+n*z^3];

			else
%                          write p(z, w) as a polynomial in z with coefficients polynomials in w 		
			   w=r*exp(ii*theta);
			   Coeffs=[b1*b2*b3+n,
				   h+b1*b3*(c2+w)+b2*(b3*(c1+w)+b1*(c3+w))+q*w,
				   (b2*c1+b1*c2)*c3+b3*(c1*c2+e)+f+(b1*c2+b3*(c1+c2)+b1*c3+b2*(c1+c3)+l)*w+...
				   (b1+b2+b3)*w^2+p*w^2,
				   d+c3*(c1*c2+e)+(c1*c2+(c1+c2)*c3+e+g)*w+(c1+c2+c3+k)*w^2+w^3+m*w^3];
			end
			
%                       find the roots of the polynomial with given coefficients
			Roots = roots(Coeffs);
			
%                       log |root|. Use max() to avoid log 0.
			Rho((degree*(count_t-1)+1):(degree*count_t))= log (max(abs(Roots), tiny)); 
		 end
		 

%        plot the roots horizontally or vertically
		 if type == 1
		        plot(LogR(count_r)*One, Rho, 'b.');
		 else
		        plot(Rho, LogR(count_r)*One, 'b.');
		 end
		 
	  end

   end
   
   saveas(gcf, sprintf('amoeba4_%d.eps', NR), 'psc2');

Podpisy

Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje

Obiekty przedstawione na tym zdjęciu

przedstawia

image/png

58973343fec280e75a3e896a225f156f45a7741c

269 569 bajt

1917 piksel

1896 piksel

Historia pliku

Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.

Data i czasMiniaturaWymiaryUżytkownikOpis
aktualny04:59, 9 mar 2007Miniatura wersji z 04:59, 9 mar 20071896 × 1917 (263 KB)wikimediacommons>Oleg AlexandrovMade by myself with Matlab. {{PD-self}}

Poniższa strona korzysta z tego pliku: