Plik:Amoeba3.png

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania
Rozmiar pierwotny (1267 × 1006 pikseli, rozmiar pliku: 12 KB, typ MIME: image/png)

Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.

Opis

Opis
English: The amoeba of
Data
Źródło Praca własna
Autor Oleg Alexandrov
Inne wersje
Ta ilustracja ma także wersję wektorową („SVG”).
Zaleca się wykorzystywanie w galeriach dostępnej wersji wektorowej zamiast obecnej.

File:Amoeba3.png → File:Amoeba3.svg

Więcej o grafice wektorowej przeczytasz w artykule Przenoszenie grafik Commons do formatu SVG.
Dostępna jest także informacja o obsłudze grafik SVG przez MediaWiki.

W innych językach
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
Nowa grafika

Licencja

Public domain Ten utwór został udostępniony jako własność publiczna przez jego autora, Oleg Alexandrov. Dotyczy to całego świata.
W niektórych krajach może nie być to prawnie możliwe, jeśli tak, to:
Oleg Alexandrov zapewnia każdemu prawo do użycia tej pracy w dowolnym celu, bez żadnych ograniczeń, chyba że te ograniczenia są wymagane przez prawo.

Source code

To jest logo: MATLAB – program komputerowy
To jest logo: MATLAB – program komputerowy
This media was created with MATLAB (program komputerowy)
Here is a listing of the source used to create this file.

Deutsch  English  +/−

% find the amoeba of a polynomial, see
% http://en.wikipedia.org/wiki/Amoeba_%28mathematics%29

% consider a polynomial in z and w
%f[z_, w_] = 1 + z + z^2 + z^3 + z^2*w^3 + 10*z*w + 12*z^2*w + 10*z^2*w^2

% as a polynomial in w with coeffs polynonials in z, its coeffs are 
% [z^2, 10*z^2, 12*z^2+10*z, 1 + z + z^2 + z^3] (from largest to smallest)

% as a polynomial in z with coeffs polynonials in w, its coeffs are 
% [1, 1+w^3+12*w+10*w^2, 1+10*w, 1] (from largest to smallest)

function main()

   figure(3); clf; hold on;
   axis([-10, 10, -6, 7]); axis equal; axis off;
   fs = 20; set(gca, 'fontsize', fs);
   
   ii=sqrt(-1);
   tiny = 100*eps;
   
   Ntheta = 300;
   NR=      400; NRs=100; % NRs << NR  

   % LogR is a vector of numbers, not uniformly distributed (more points where needed).
   A=-10; B=10; AA = -0.1; BB = 0.1; 
   LogR  = [linspace(A, B, NR-NRs), linspace(AA, BB, NRs)]; LogR = sort (LogR);
   R     = exp(LogR);

   % a vector of angles
   Theta = linspace(0, 2*pi, Ntheta);

   Rho = zeros(1, 3*Ntheta); % will store the absolute values of the roots
   One = ones (1, 3*Ntheta);

   % draw the 2D figure as union of horizontal pieces and then union of vertical pieces
   for type=1:2

	  for count_r = 1:NR
		 count_r
		 
		 r = R(count_r);
		 for count_t =1:Ntheta
			
			theta = Theta (count_t);

			if type == 1
			   z=r*exp(ii*theta);
			   Coeffs = [z^2, 10*z^2, 12*z^2+10*z, 1 + z + z^2 + z^3];
			else
			   w=r*exp(ii*theta);
			   Coeffs = [1, 1+w^3+12*w+10*w^2, 1+10*w, 1];
			end

			% find the roots of the polynomial with given coefficients
			Roots = roots(Coeffs);

                        % log |root|. Use max() to avoid log 0.
			Rho((3*count_t-2):(3*count_t))= log (max(abs(Roots), tiny)); 
		 end
		 

		 % plot the roots horizontally or vertically
		 if type == 1
			plot(LogR(count_r)*One, Rho, 'b.');
		 else
			plot(Rho, LogR(count_r)*One, 'b.');
		 end
		 
	  end

   end
   
   saveas(gcf, 'amoeba3.eps', 'psc2');

% A function I decided not to use, but which may be helpful in the future.   
%function find_gaps_add_to_curves(count_r, Rho)
%
%   global Curves;
%   
%   Rho = sort (Rho);
%   k = length (Rho);
%
%   av_gap = sum(Rho(2:k) - Rho (1:(k-1)))/(k-1);
%
%   % top-most and bottom-most curve
%   Curves(1, count_r)=Rho(1); Curves(2, count_r)=Rho(k);
%
%   % find the gaps, which will give us points on the curves limiting the amoeba
%   count = 3;
%   for j=1:(k-1)
%	  if Rho(j+1) - Rho (j) > 200*av_gap
%
%		 Curves(count, count_r) = Rho(j);   count = count+1;
%		 Curves(count, count_r) = Rho(j+1); count = count+1;
%	  end
%   end

% The polynomial in wiki notation
%<math>P(z_1, z_2)=1 + z_1\,</math>
%<math>+ z_1^2 + z_1^3 + z_1^2z_2^3\,</math>
%<math>+ 10z_1z_2 + 12z_1^2z_2\,</math>
%<math>+ 10z_1^2z_2^2.\,</math>

Podpisy

Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje

Obiekty przedstawione na tym zdjęciu

przedstawia

image/png

bcbbd985122ea85c5b131921b3b73b0f80332b80

12 078 bajt

1006 piksel

1267 piksel

Historia pliku

Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.

Data i czasMiniaturaWymiaryUżytkownikOpis
aktualny16:45, 2 mar 2007Miniatura wersji z 16:45, 2 mar 20071267 × 1006 (12 KB)wikimediacommons>Oleg AlexandrovMade by myself with Matlab.

Poniższa strona korzysta z tego pliku: