Plik:VFPt horseshoe-magnet.svg
Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.
Opis
| OpisVFPt horseshoe-magnet.svg |
English: Drawing of a horseshoe magnet with precisely computed magnetic field lines. The horseshoe magnet is assumed as a curved cylindrical rod with constant magnetisation along the cylinder axis. North- and southpole of the magnet are marked in red and green, respectively. The shape of the magnetic field is computed as follows: H- and B-field are identical in free space, so we can choose the easier one, which is the H-field. The H-field has its sources and sinks where the lines of the magnetisation end and begin. Thus, the correct field is obtained by placing magnetic charges at the surfaces of the two magnetic poles. The field of a charge disc distribution is obtained by numerical integration. The shape of the field lines is traced with a Runge-Kutta algorithm. The density of field lines corresponds roughly to the field strength, however due to 3D variations of the field, this cannot exactly be fulfilled. Note that in measured field distributions, e.g. using magnetised iron filings the field shape in the lower part of the image (where the magnet is bent) may somewhat differ. This is because the total field strength is very weak there. Therefore any inhomogeneity in the magnetisation can strongly alter the field direction. |
||
| Data | |||
| Źródło | Praca własna | ||
| Autor | Geek3 | ||
| SVG rozwój InfoField |
| ||
| Kod źródłowy InfoField | Python code# paste this code at the end of VectorFieldPlot 3.0
doc = FieldplotDocument('VFPt_horseshoe-magnet', commons=True,
width=600, height=600)
x0, y0 = 0.0, -1.0
h = 2.0
R = 1.0
r = 0.3
# Note: The H-field of a magnet with constant profile and magnetization
# is exactly equal to the one created by magnetic surface charges
# at the ends of the magnet. In this case the ends are round discs.
field = Field([
['charged_disc', {'x0':x0-R-r, 'y0':y0+h, 'x1':x0-R+r, 'y1':y0+h, 'Q':-1}],
['charged_disc', {'x0':x0+R-r, 'y0':y0+h, 'x1':x0+R+r, 'y1':y0+h, 'Q':1}] ])
nlines = 24
def startp(t):
return np.array([x0 + R - R*cos(t*2*pi), y0 + h + R*sin(t*2*pi)])
startpoints = Startpath(field, startp).npoints(nlines)
for iline, p0 in enumerate(startpoints):
line = FieldLine(field, p0, directions='both', maxr=1000)
fe = {'start':True, 'leave_image':False, 'enter_image':False, 'end':True}
if iline in [0, 1, 2, nlines-1, nlines-2, nlines-3]:
fe['start'] = fe['end'] = False
min_arrows = 1
if iline == nlines - 7:
min_arrows = 3
doc.draw_line(line, arrows_style={
'dist':2.0, 'fixed_ends':fe, 'min_arrows':min_arrows})
# draw a horseshoe magnet with color gradients
g = doc.draw_object('g', {'id':'horseshoe',
'transform':'translate({},{})'.format(x0, y0)})
defs = doc.draw_object('defs', {}, group=g)
grad_col = ['#000000', '#ffffff', '#ffffff', '#ffffff', '#000000']
grad_offs = np.array([0, 0.07, 0.25, 0.6, 1])
grad_opa = np.array([0.125, 0.125, 0.5, 0.2, 0.33])
grad1 = doc.draw_object('linearGradient', {'id':'grad1', 'x1':'0',
'x2':'1', 'y1':'0', 'y2':'0', 'gradientUnits':'objectBoundingBox'},
group=defs)
for col, of, opa in zip(grad_col, grad_offs, grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad1)
grad2 = doc.draw_object('radialGradient', {'id':'grad2', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in sorted(zip(grad_col, 1-grad_offs*2.*r/(R+r), grad_opa),
key=lambda x: x[1]):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad2)
grad3 = doc.draw_object('radialGradient', {'id':'grad3', 'r':str(R+r),
'cx':'0', 'cy':'0', 'fx':'0', 'fy':'0',
'gradientUnits':'userSpaceOnUse'}, group=defs)
for col, of, opa in zip(grad_col, (R-r)/(R+r)+grad_offs*2.*r/(R+r), grad_opa):
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad3)
grad4 = doc.draw_object('linearGradient', {'id':'grad4', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '1'], ['#ffffff', str(r/(R+r)), '1'],
['#ffffff', str(R/(R+r)), '0'], ['#ffffff', '1', '0']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad4)
mask4 = doc.draw_object('mask', {'id':'mask4', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad4); stroke:none;'}, group=mask4)
grad5 = doc.draw_object('linearGradient', {'id':'grad5', 'x1':str(-R-r),
'x2':str(R+r), 'y1':'0', 'y2':'0', 'gradientUnits':'userSpaceOnUse'},
group=defs)
for col, of, opa in [['#ffffff', '0', '0'], ['#ffffff', str(r/(R+r)), '0'],
['#ffffff', str(R/(R+r)), '1'], ['#ffffff', '1', '1']]:
stop = doc.draw_object('stop', {'stop-color':col, 'offset':of,
'stop-opacity':opa}, group=grad5)
mask5 = doc.draw_object('mask', {'id':'mask5', 'maskContentUnits':'userSpaceOnUse'}, group=defs)
doc.draw_object('rect', {'x':str(-R-r), 'y':str(-R-r), 'width':str(2*(R+r)),
'height':str(R+r), 'style':'fill:url(#grad5); stroke:none;'}, group=mask5)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#ff0000; ' +
'stroke:none;'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, 0, -R+r, 0, -R-r,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:#00cc00;stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} L {},{} L {},{} L {},{} Z').format(R-r, h,
R+r, h, R+r, 0, R-r, 0, R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad1);stroke:none;'},
group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad2);stroke:none;',
'mask':'url(#mask4)'}, group=g)
d = ('M {},{} L {},{} A {},{} {} {} {} {},{} ' +
'L {},{} A {},{} {} {} {} {},{} Z').format(-R-r, 0, -R+r, 0,
R-r, R-r, 0, 0, 1, R-r, 0, R+r, 0, R+r, R+r, 0, 0, 0, -R-r, 0)
doc.draw_object('path', {'d':d, 'style':'fill:url(#grad3);stroke:none;',
'mask':'url(#mask5)'}, group=g)
d = ('M {},{} L {},{} L {},{} A {},{} {} {} {} {},{} L {},{} L {},{} ' +
'L {},{} A {},{} {} {} {} {},{} L {},{} Z').format(-R-r, h,
-R+r, h, -R+r, 0, R-r, R-r, 0, 0, 1, R-r, 0, R-r, h, R+r, h, R+r, 0,
R+r, R+r, 0, 0, 0, -R-r, 0, -R-r, h)
doc.draw_object('path', {'d':d, 'style':'fill:none; ' +
'stroke:#000000; stroke-width:0.04;'}, group=g)
text_N = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_N.text = 'N'
text_S = doc.draw_object('text', {'text-anchor':'middle', 'x':'0', 'y':'0',
'transform':'translate({},{}) scale({},{})'.format(-R, h-0.6, 0.04, -0.04),
'style':'fill:#000000; stroke:none; ' +
'font-size:12px; font-family:Bitstream Vera Sans;'}, group=g)
text_S.text = 'S'
doc.write()
|
Licencja
- Wolno:
- dzielić się – kopiować, rozpowszechniać, odtwarzać i wykonywać utwór
- modyfikować – tworzyć utwory zależne
- Na następujących warunkach:
- uznanie autorstwa – musisz określić autorstwo utworu, podać link do licencji, a także wskazać czy utwór został zmieniony. Możesz to zrobić w każdy rozsądny sposób, o ile nie będzie to sugerować, że licencjodawca popiera Ciebie lub Twoje użycie utworu.
- na tych samych warunkach – Jeśli zmienia się lub przekształca niniejszy utwór, lub tworzy inny na jego podstawie, można rozpowszechniać powstały w ten sposób nowy utwór tylko na podstawie tej samej lub podobnej licencji.
Podpisy
Obiekty przedstawione na tym zdjęciu
przedstawia
horseshoe magnet angielski
Jakaś wartość bez elementu Wikidanych
7 lip 2018
image/svg+xml
Historia pliku
Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.
| Data i czas | Miniatura | Wymiary | Użytkownik | Opis | |
|---|---|---|---|---|---|
| aktualny | 19:03, 7 lip 2018 | 600 × 600 (40 KB) | wikimediacommons>Geek3 | User created page with UploadWizard |
Lokalne wykorzystanie pliku
Poniższa strona korzysta z tego pliku: