Plik:Fourier series integral identities.gif

Z testwiki
Przejdź do nawigacji Przejdź do wyszukiwania
Fourier_series_integral_identities.gif (500 × 275 pikseli, rozmiar pliku: 188 KB, typ MIME: image/gif, zapętlony, 43 klatki, 1 min 8 s)

Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.

Opis

Opis
العربية: تعامد دوال الجيب وجيب التمام يجعل تكامل مضروب زوج منهم صفرا.
Ελληνικά: Τα ημίτονα και τα συνημίτονα σχηματίζουν ένα ορθοκανονικό σύνολο, όπως απεικονίζεται παραπάνω. Το ολοκλήρωμα του ημιτόνου, του συνημιτόνου και το γινόμενό τους είναι ίσο με μηδέν (οι πράσινες και οι κόκκινες περιοχές είναι ίσες και έχουν ακυρωθεί) όπου m, n ή οι συναρτήσεις είναι διαφορετικές, και π μόνο όταν τα m και n είναι ίσα, και η συνάρτηση που χρησιμοποιείται είναι η ίδια.
English: Sines and cosines form an orthonormal set — that is, the integral of sine, cosine and their product is equal to zero (green and red areas are equal, and cancel out) when m, n or the functions are different, and equal to pi only if m and n are equal, and the function used is the same.
中文:​正弦和餘弦形成了正交集合。正弦、餘弦及其乘積的積分,當m與n不同或二函數不同時是0(綠色和紅色區域相等抵消),僅當m和n相等並且函數相同時為π。.
Data
Źródło Praca własna
Autor Lucas Vieira
Licencja
(Ponowne użycie tego pliku)
Public domain Ja, właściciel praw autorskich do tej pracy, udostępniam ją jako własność publiczną. Dotyczy to całego świata.
W niektórych krajach może nie być to prawnie możliwe, jeśli tak, to:
Zapewniam każdemu prawo do użycia tej pracy w dowolnym celu, bez żadnych ograniczeń, chyba że te ograniczenia są wymagane przez prawo.

Podpisy

Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje

Obiekty przedstawione na tym zdjęciu

przedstawia

Historia pliku

Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.

Data i czasMiniaturaWymiaryUżytkownikOpis
aktualny20:05, 29 mar 2011Miniatura wersji z 20:05, 29 mar 2011500 × 275 (188 KB)wikimediacommons>LucasVB{{Information |Description ={{en|1=The five integral identities that make Fourier series work.}} |Source ={{own}} |Author =Kieff |Date =2011-03-29 |Permission = |other_versions = }} [[Category:Mathematical

Poniższa strona korzysta z tego pliku: