Zbiory Marczewskiego

Z testwiki
Wersja z dnia 02:20, 1 lut 2021 autorstwa imported>Tarnoob (Przypisy: kat.)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacji Przejdź do wyszukiwania

Zbiory Marczewskiego, znane także jako zbiory (s)-Marczewskiego lub krótko (s)-zbiory – podzbiory A prostej mające tę własność, że dla dowolnego zbioru doskonałego P istnieje taki zbiór doskonały QP, że albo QAP albo QPA. Pojęcie pochodzi od Edward Marczewski (Szpilrajna), z jego pracy z roku 1935[1]. Marczewski pokazał, że rodzina (s) wszystkich (s)-zbiorów jest σ-ciałem podzbiorów prostej. Motywacją do wprowadzenia tej rodziny była praca Sierpińskiego[2], w której rozważane były funkcje

f:

o tej własności, że dla dowolnego zbioru doskonałego P istnieje taki zbiór doskonały QP, że obcięcie f|Q jest funkcją ciągłą. Marczewski pokazał w cytowanej pracy, że takie funkcje pokrywają się z rodziną funkcji mierzalnych względem σ-ciała (s).

Ze zbiorami (s)-Marczewskiego związane są tzw. zbiory (s0)-Marczewskiego. Rodzinę tę definiuje się jako

(s0)={A:P𝒫Q𝒫(QPA)},

gdzie 𝒫 to rodzina wszystkich zbiorów doskonałych na prostej. Rodzina (s0) jest σ-ideał podzbiorów prostej i składa się z ze zbiorów należących do (s) dziedzicznie w (s) zawartych, tj.

(s0)={A(s):BA(B(s))}.

Uogólnienia

Niech X będzie niepustym zbiorem i niech 𝒫(X){}. Definiuje się rodziny s() oraz s0() w sposób następujący:

s()={AX:PQ(QAP lub QAP)}

oraz

s0()={AX:PQ(QAP)}.

Jeśli to rodzina wszystkich zbiorów doskonałych na prostej, to s()=(s) oraz s0()=(s0), czyli uzyskane rodziny pokrywają się z klasycznymi zbiorami Marczewskiego. Burstin w 1914 roku pokazał, że jeśli to rodzina wszystkich zbiorów doskonałych o mierze dodatniej na prostej, to s() i s0(), to odpowiednio σ-ciało zbiorów mierzalnych w sensie Lebesgue’a i σ-ideał zbiorów miary zero na prostej[3]. Jeśli będzie rodziną zbiorów otwartych, to dowodzi się, że s0() składa się ze zbiorów nigdziegęstych, natomiast s() to rodzina zbiorów o nigdziegęstym brzegu, co pokazuje, że s() i s0() nie muszą być zawsze, odpowiednio, σ-ciałem i σ-ideałem.

Zobacz też

Przypisy

Szablon:Przypisy

  1. E. Marczewski (Szpilrajn), Sur une classe de fonctions de M. Sierpiński et la classe correspondante densembles, Fund. Math. 24 (1935), 17-34. http://matwbn.icm.edu.pl/ksiazki/fm/fm24/fm2414.pdf.
  2. W. Sierpiński, Sur un probleme de M. Ruziewicz concernant les superpositions de fonctions jouissant de la propriete de Baire, Fund. Math. 24 (1935), 12-16. http://matwbn.icm.edu.pl/ksiazki/fm/fm24/fm2413.pdf.
  3. C. Burstin, Eigenschaften messbarer und nichtmessbarer Mengen, Sitzungsber. Kaiserlichen Akad. Wiss. Math.-Natur. Kl. Abteilung IIa, 123 (1914), 1525-1551.